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Genome-wide association studies (GWAS) have identified 
thousands of genetic variants that have been associated 
with quantitative traits and common diseases. However, the 

vast majority of variants occur in noncoding regions, resulting in 
significant challenges when attempting to elucidate the molecular 
mechanisms through which these variants contribute to diseases 
and phenotypes. To provide functional interpretations of GWAS 
loci, researchers have suggested employing several molecular QTL 
analyses, including expression QTLs (eQTLs)1, which are genetic 
variants associated with the expression of one or more genes. 
Although these genetic variants can be informative and, in many 
cases, are thought to impact the transcription of nearby genes, the 
roles played by a large fraction of trait-associated noncoding vari-
ants is unexplained2.

APA plays an important role during the posttranscriptional 
regulation of most human genes. By employing different polyad-
enylation (poly(A)) sites, genes can either shorten or extend 3′UTRs 
that contain cis-regulatory elements, such as microRNAs (miRNA) 
or RNA-binding protein (RBP) binding sites3. Therefore, APA can 
affect the stability and translation efficiency of target messenger 
RNA and the cellular localization of proteins4. The diverse land-
scape of poly(A) sites can substantially impact both normal devel-
opment and the progression of diseases, such as cancer5. The broad 
importance of alternative polyadenylation is well exemplified by 
the altered expression of NUDT21, a key APA regulator, in diseases 
such as glioblastoma6 and idiopathic pulmonary fibrosis7. More 
recently, our work revealed a more nuanced interpretation of APA 
since 3′UTR shortening in breast cancer represses tumor suppressor 
genes in trans by disrupting competing endogenous RNA crosstalk8.

In addition to being associated with gene expression, genetic 
variations have been identified as critical regulatory factors for 
the APA of individual genes in certain cell lines9,10. Moreover, 
APA-associated genetic changes have been linked to the develop-
ment of multiple disease states, including cancer11, α-thalassemia12, 
facioscapulohumeral muscular dystrophy13, bone fragility14, neo-
natal diabetes15 and systemic lupus erythematosus16,17. As a prime 
example of these studies, one SNP (rs10954213) within the 3′UTR of 
IRF5 can alter the 3′UTR length and affect mRNA stability17, which 
can further contribute to systemic lupus erythematosus susceptibil-
ity. Aside from these few isolated examples, the broad implications 
of genetic determinants impacting APA in various human tissues 
and their association with phenotypic traits and diseases have not 
been systematically examined.

Previous studies identified APA-associated SNPs using 3′-end 
profiling methods, which have not been widely adopted; thus, 
these methods have only been applied to small sample sizes9,18. In 
contrast, RNA sequencing (RNA-seq) has been extensively used 
during eQTL studies; however, only a few RNA-seq data have 
been analyzed in a manner that would systematically identify and 
quantify APA events19. To obtain an insight into the genetic basis 
of APA regulation in human tissues, we used our dynamic analy-
ses of APA from RNA-seq (DaPars) algorithm20 to construct an 
atlas of tissue-specific, human APA events, using 8,277 RNA-seq 
datasets coupled with whole-genome sequencing genotype data 
derived from 46 tissues and isolated from 467 individuals by the 
Genotype-Tissue Expression Project (GTEx)1. In total, we identified 
403,215 common cis-acting genetic variants associated with APA 
(3′aVariants), which were colocalized with 16.1% of trait-associated 
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variants in at least 1 tissue. Collectively, the results of our study indi-
cated that 3′aQTLs reveal the genetic architecture of an emerging 
molecular phenotype and can be used to interpret a significant por-
tion of the human genetic variants found outside of coding regions.

Results
An atlas of human 3′aQTLs. To detect global APA events in pri-
mary human tissues, we used our DaPars v.2.0 algorithm to iden-
tify APA events retrospectively and directly using 8,277 standard 
RNA-seq samples in 46 tissue types from the GTEx v.7 project. The 
multi-sample DaPars v.2 regression framework calculates a percent-
age of distal poly(A) site usage index (PDUI) value for each gene in 
each sample (Supplementary Fig. 1). The PDUI values can then be 
normalized further after corrections for known covariates includ-
ing sex, sequencing platform, population structure, RNA integrity 
number and inferred technical covariates using probabilistic esti-
mation of expression residual (PEER) factors21. The inferred PEER 
factors were strongly associated with several known covariates for 
each sample and donor (Extended Data Figs. 1–3). We then used 
Matrix eQTL to identify common genetic variations associated with 
differential 3′UTR usage (3′aQTLs) in each tissue22 (Methods). 
Genes with a 3′aQTL are called 3′aGenes and the corresponding sig-
nificant variants are called 3′aVariants. Using a false discovery rate 
(FDR) threshold of 5%, we identified 403,215 3′aVariants associated 
with 11,613 3′aGenes across 46 tissues, representing approximately 
51% of annotated genes (Fig. 1a). Across all tissues, we discovered 
56.7% of protein-coding and 26.1% of long noncoding RNA genes 

detected in at least 1 tissue (Supplementary Fig. 2). The tissues with 
the highest numbers of 3′aQTLs tended to have larger sample sizes 
(Supplementary Table 1). This strong association between 3′aQTL 
number and sample size suggests that additional APA events and 
3′aQTLs will continue to be discovered as additional RNA-seq data-
sets become available. In addition, our global analysis of recent satu-
ration mutagenesis data23 showed that 3′aQTLs are more enriched 
in the variants that lead to more notable APA changes (Extended 
Data Fig. 4).

To evaluate the performance of our 3′aQTL detection method 
using the current sample size, we compared the detected 3′aQTLs 
with previously reported SNPs that have been associated with varia-
tions in 3′UTR usage. Although previous studies of APA events 
have been limited to a few cell types, such as lymphoblastoid cells, 
our approach recaptured many of these ‘experimentally validated’ 
3′aQTLs. For example, the strong association between the SNP 
rs10954213 and the alternative 3′UTR of IRF5 (ref. 17), which encodes 
a transcription factor involved in multiple immune processes, was 
replicated in a whole-blood 3′aQTL analysis (Fig. 1b). Interestingly, 
we also found that this genetic effect on IRF5 was shared in 22 other 
tissues, suggesting that the multi-tissue context analysis of this locus 
could aid further investigations into how IRF5 variants contribute 
to autoimmune diseases (Supplementary Fig. 3). Of the 15 previ-
ously reported SNP-associated APA genes that were identified in 
lymphoblastoid cell lines9,10,24–26, our 3′aQTL analysis was able to 
recapture 13 (87%) in Epstein–Barr virus (EBV)-transformed lym-
phocytes (Supplementary Fig. 4). This observation indicated that 
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the currently available datasets can be used to capture most of the 
known APA-associated SNPs in human tissues.

To investigate the global distribution of 3′aQTLs across the 
human genome, we used Manhattan plots to visualize the locations 
of 3′aQTLs, with their associated P values (Supplementary Fig. 5a). 
Significant 3′aQTLs were distributed across each chromosome. 
Importantly, previously reported APA genes were readily detected, 
including IRF5 (ref. 17), ERAP1 (ref. 10), THEM4 (ref. 10), EIF2A 
and DIP2B9; however, most of the detected 3′aQTL genes repre-
sented, to the best of our knowledge, new events. Several of these 
new 3′aQTL genes are particularly noteworthy, including CHURC1 
(Supplementary Fig. 5b), which encodes a zinc-finger transcrip-
tional activator that is important during neuronal development27, 
and TPSAB1 (Supplementary Fig. 5c), which encodes α-tryptase 
and reportedly plays a role in multisystem disorders, such as irritable 
bowel syndrome, caused by elevated basal serum tryptase levels28.

We applied heritability estimation and genetic fine-mapping to 
elucidate the genetic architecture of APA gene variations caused 
by 3′aQTLs. Specifically, we used a linear mixed model in the 
genome-wide complex trait analysis genome-based restricted 
maximum likelihood program29 to estimate the heritability of the 
APA variations contributed by all 3′aVariants in each gene, within 

the 1-megabase (Mb) cis region. We observed that 3′aQTLs can 
explain, on average, 25.2% of APA variations (Fig. 1c). At the indi-
vidual tissue level, 3′aQTLs can explain between 15.5 and 51.2% of 
APA variations (Supplementary Table 2). Furthermore, 3′aQTLs 
could explain >50% of APA variations in 2.2% of APA genes, which 
are enriched in antigen processing and response to interferon-γ 
(IFN-γ)-mediated signal pathways (Supplementary Fig. 6). For 
example, 72.7% of the IRF5 APA variations can be explained by 
3′aQTLs. We also found that 3′aQTLs can explain, on average, 
16.2% of APA gene expression changes (Supplementary Fig. 7). 
To account for correlations among the identified 3′aQTLs, due to 
linkage disequilibrium (LD), we used sum of single effects (SuSiE) 
regression30 to fine-map independent associations (summarized as 
95% single-effect credible sets) for each APA transcript in each tis-
sue. SuSiE produces clusters of association signals and each signal 
is designed to capture exactly one causal SNP independent from 
those captured by other clusters. SNPs within each signal cluster 
are highly correlated due to LD. ALDH16A1 is an APA example 
where SuSiE revealed two independent 3′aQTL signal clusters (the 
lead 3′aQTLs are rs1006938 and rs73582462). The maximum R2 
between any 2 SNPs taken separately from the 2 clusters is very 
small (0.03), suggesting that there are indeed 2 independent signals 
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detected. IRF5 is another APA example where SuSiE detected only 
one signal cluster (the lead 3′aQTL is rs10954213). In total, 35% 
of tissue-transcript pairs were associated with more than 1 inde-
pendent 3′aQTL, which indicated the widespread, allelic hetero-
geneity of 3′aQTL effects (Fig. 1d). Altogether, the approximately 
0.4 million 3′aQTLs we identified provide an extensive display of 
how common genetic variants are associated with 3′UTR usage 
across multiple human tissues and expand the number of known 
3′aQTLs by several orders of magnitude compared with all previ-
ously reported APA-associated SNPs.

Patterns of tissue specificity for 3′aQTLs. To examine how cis 
regulatory elements contribute to APA events in tissue-specific or 
shared manners (Supplementary Fig. 8), we used multivariate adap-
tive shrinkage (MASH)31 to estimate the effect sizes of 3′aQTLs 
shared across all 46 tissues, while controlling for nongenetic cor-
relations, such as sample overlap. The heterogeneity of cross-tissue 
effects was evaluated based on the sharing of signs (effects in the 
same direction) and magnitudes (effects in the same direction and 

within a twofold effect size change) among 3′aQTLs. This analysis 
revealed that human tissues cluster into two major groups—brain 
tissues and non-brain tissues—using hierarchical clustering with 
complete linkage (Fig. 2a). We also noted that some biologically 
related tissues grouped within ‘non-brain’ tissues, such as the uterus/
vagina/ovary and colon/stomach groups (Fig. 2b). These patterns 
revealed developmental and functional similarities between dif-
ferent tissues due to APA regulation. In addition, we found that, 
although 78.4% of tissues had 3′aQTLs with the same sign, only 
13.9% of shared 3′aQTLs displayed similar magnitudes. Compared 
with eQTLs shared among tissues (85% shared among tissues by 
sign and 36% shared among tissues by magnitude)31, 3′aQTLs 
exhibited similar sign effects (Supplementary Figs. 9 and 10)  
but a much lower degree of shared-magnitude effects (Fig. 2c–e, 
Supplementary Fig. 11 and Extended Data Fig. 5). One possible 
explanation is that APA events are more tissue-specific than gene 
expression (Supplementary Fig. 12). Considered collectively, these 
observations suggested that 3′aQTL effect sizes exhibit greater tis-
sue specificity than that of eQTLs.
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3′aQTLs have distinct molecular features. To characterize the rela-
tionships between different QTLs, we classified lead 3′aQTLs and 
lead eQTLs across 46 tissue types according to the functional cat-
egories defined in SnpEff v.5.0 (ref. 32). As expected, we found that 
3′aQTLs were significantly enriched in 3′UTRs (P = 2.68 × 10−30) or 
located within 5 kilobases (kb) downstream of genes (P = 9.43 × 10−08), 
whereas eQTLs were significantly enriched within gene promoters/
upstream regions (P = 1.11 × 10−34) or within 5′UTRs (P = 1.42 × 10−32) 
(Fig. 3a). This observation is consistent with the metagene analysis 
encompassing the relative position distributions of 3′aQTLs and 
eQTLs over their associated genes (Fig. 3b). 3′aQTLs are distributed 
approximately symmetrically around the 3′UTR region and 34% of 
3′aQTLs are located in downstream gene regions, likely due to the 
LD effect1,33 (Methods). 3′aQTLs also differ markedly from splicing 
QTLs (sQTLs)33, which are enriched primarily within gene bodies 
and splice regions (Extended Data Fig. 6). We also cross-referenced 
the recent 549 protein QTLs34 (pQTLs) with lead 3′aQTLs and lead 
eQTLs. We found that 154 multi-tissue 3′aQTLs are pQTLs for 
the same gene in 1 or more tissues and 78.5% of pQTL-overlapped 
3′aQTLs are not eQTLs. These data suggest that some 3′aQTLs can 
affect protein expression levels independent of gene expression.

To further determine the genomic context of 3′aQTLs, while also 
accounting for LD effects, we examined the enrichment of 3′aQTLs 
according to their posterior causal probabilities. Fine-mapped 
3′aQTLs were allocated into six bins based on causality quantiles. 
We found that 27.4% of 3′aQTLs in the most causal bin (larger 

than the 90th quantile) were associated with a 14-fold enrichment 
in 3′UTR regions compared with 3′aQTLs in the least causal bins 
(less than the 50th quantile) (Fig. 3c). Interestingly, 3′aQTLs are also 
highly enriched in conserved regions (University of California Santa 
Cruz (UCSC) phastCons conservation score >0.8) (Fig. 3d) but not 
in transcription factor binding sites (Supplementary Fig. 13).

Moreover, the structures of 3′aGenes and eQTL-associated 
genes (eGenes) differed considerably. Compared with eGenes, 
3′aGenes harbored comparable 5′UTRs but much longer cod-
ing sequences (CDS) (P = 2.71 × 10−26) and 3′UTR lengths 
(P = 3.51 × 10−147) (Fig. 3e). Furthermore, a significantly higher 
number of adenylate-uridylate-rich elements proximal to poly(A) 
sites were observed in 3′aGenes than in eGenes (P = 7.61 × 10−198), 
suggesting that 3′aGenes harbor more potentially regulatory ele-
ments that control APA events (Supplementary Fig. 14). 3′aGenes 
are also enriched in ontologies related to immune and environmen-
tal responses, such as the IFN-γ-mediated signaling pathway. This 
is in contrast with eGenes, which were underrepresented in genes 
related to the environmental response1. Considered collectively, 
the results of these analyses suggested that 3′aQTLs and the genes 
affected by them have different molecular features than other previ-
ously defined QTLs and their modulated genes.

Alterations of poly(A) motifs are associated with APA. Next, 
we investigated the potential mechanisms through which genetic 
variations contribute to APA events. We hypothesized that some 
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Fig. 4 | 3′aQTLs can alter PAS and uridylate-rich motifs in human tissues. a, Summary of the PAS altered by 3′aVariants across human tissues. The x axis 
shows the tissue names and the y axis lists the number of 3′aQTLs that alter the PAS. b, Enrichment of 3′aVariants that alter PAS and uridylate-rich motifs 
and are proximal to poly(A) sites, compared with the rest of the genome. Data are presented as odds ratio and 95% CI. c, Box plot showing the significant 
correlation between the 3′aQTL rs1130319 and ADI1 APA events for each genotype. Each dot represents a normalized PDUI value from a single sample. The 
center horizontal lines represent the median values and the boxes span from the 25th to the 75th percentile. The whiskers extend to 1.5× IQR (bottom). 
The coverage plot illustrates that this SNP could disrupt the canonical PAS. The red dotted line in the RefSeq gene structure indicates the location of the 
3′aVariant. The PAS is shown, with the 3′aQTL highlighted in red. d, Box plot showing that the 3′aQTL rs3211995 is strongly correlated with the SLC9A3R2 
3′UTR change for each genotype. The coverage plot illustrates that this SNP could ‘create’ a canonical PAS. e, Box plot showing that the 3′aQTL rs12359, 
which alters the uridylate-rich motif, is strongly associated with SYDE1 3′UTR usage for each genotype.
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3′aQTLs alter the motifs important for the 3′-end processing 
of transcripts. Alterations to the polyadenylation signal (PAS) 
can produce distinct mRNA isoforms, with 3′UTRs of differing 
lengths. However, only a few cases have been reported from a lim-
ited number of cell lines9,35. To systematically examine the preva-
lence of PAS-altering 3′aQTLs among human populations, we 
extracted significant 3′aVariants located within 50 base pairs (bp) 
upstream of annotated poly(A) sites from the Poly(A) database 
(PolyA_DB)36, UCSC, Ensembl and RefSeq gene annotations, and 
performed motif searches based on 15 common PAS motif vari-
ants. In total, we identified 2,135 3′aVariants that alter the PAS and 
generate alternative 3′UTR lengths in their associated genes across 
46 human tissues (Fig. 4a and Supplementary Table 3). A total of 
991 3′aVariants either disrupted the canonical PAS (AATAAA) or 
changed other PAS variants to the canonical PAS (P = 2.827 × 10−10)  
(Fig. 4b). For example, a change in the rs1130319 SNP from the ref-
erence A allele to the C allele, which impairs the canonical PAS, 
AATAAA, correlated with the preferred use of a cryptic poly(A) 
site in the ADI1 3′UTR (Fig. 4c). We validated our finding using 
recent saturation mutagenesis data23, where the same 3′aVariant dis-
ruption of the ADI1 canonical poly(A) motif resulted in a 20-fold 
decrease in the abundance of the long isoform (Extended Data 
Fig. 7a). In another case, a G>A change in rs3211995 resulted in a 
strong PAS (AATAAA), instead of the weak noncanonical GATAA 
motif, at the 3′-end of SLC9A3R2, which correlated with a shift to 
an mRNA isoform with a longer 3′UTR (Fig. 4d). Again, saturation 
mutagenesis confirmed that this 3′aVariant resulted in a 42.52-fold 
increase in the abundance of the long isoform (Extended Data  
Fig. 7b). We also found that 3′aVariants are prone to alter those PAS 
variants that are proximal to annotated poly(A) sites (Fig. 4b). In 
addition to the PAS, we also investigated whether 3′aVariants could 
alter uridylate-rich elements, which are also important for 3′-end 
processing4. Interestingly, adenylate-uridylate, guanylate-uridylate 
and uridylate-rich motifs were also frequently altered by 3′aQTLs 
(Fig. 4b and Supplementary Fig. 15). For example, a 3′aVariant 
at the guanylate-uridylate-rich motif, GTTTG, located near the 
proximal poly(A) site of the gene SYDE1, could lead to significant 
3′UTR shortening (Fig. 4e). The uridylate-rich motif variations on 
APA have been described before37. Collectively, these results sug-
gested that a small fraction of detectable APA events are the result of 
3′aVariants alterations of PAS or uridylate-rich motifs.

APA-associated RBP binding sites and RNA secondary struc-
ture. Alterations in polyadenylation signals can explain only a small 
percentage of 3′aQTLs, suggesting that most 3′aQTLs affect APA 
via other mechanisms. To test this hypothesis, we analyzed the 
extent to which 3′aQTLs interfere with either the transcriptional or  

posttranscriptional regulation of target genes. First, we used 
DeepBind v.0.11 (ref. 38) to evaluate the enrichment of 3′aVariants 
in 927 binding motifs of 538 DNA-binding proteins and RBPs, in 
each tissue, using randomly shuffled 3′aVariants as a control group. 
We identified 125 motifs that were significantly enriched in 3′aVari-
ants, 17 of which were common among at least 20% of the tissues 
examined (Supplementary Fig. 16). Proteins associated with these 
17 common motifs were significantly enriched (P = 1.06 × 10−5; 
hypergeometric test) with known poly(A) factors, such as PABP39, 
CPEB4 (refs. 39,40), SRSF7 (ref. 41), RBFOX1 (ref. 42) and HNRNPC, 
which was recently described as an APA regulator43.

We then analyzed 166 RBP cross-linking immunoprecipitation 
sequencing (CLIP-seq) datasets, which were available from the 
Encyclopedia of DNA Elements (ENCODE) project44. These data-
sets are particularly useful because 81.2% of RBPs are not included 
in the DeepBind resource. We examined whether 3′aQTLs were 
significantly enriched within the CLIP-seq binding peaks of each 
RBP compared with a random sequence dataset. We further inte-
grated a new computational strategy to predict the trans-regulator 
of APA (Methods and Extended Data Fig. 8) and identified 73 RBPs 
that preferentially bound to regions containing 3′aQTLs, including 
several poly(A) factors, such as CSTF, in addition to many splic-
ing factors (Fig. 5a and Supplementary Table 4). Consistent with a 
potential functional significance, these splicing factors have previ-
ously been linked to alternative 3′UTR usage40,41.

To evaluate the association between 3′aQTL and RNA structural 
features, we decided to use the riboSNitch data45, which are defined 
as DNA variants affecting RNA secondary structure changes by par-
allel analysis of RNA structure experiments. We cross-referenced 
these riboSNitch data with our lead 3′aQTLs. The overlap event was 
defined as high LD (R2 ≥ 0.8) between lead 3′aQTL and riboSNitch 
for the same transcript. We found that 10.6% of riboSNitch data 
overlapped with 3′aQTLs (Supplementary Fig. 17), suggesting a 
strong correlation between 3′aQTLs and RNA secondary structure.

3′aQTL analysis facilitates the identification of APA regulators 
such as LARP4. Among the 73 3′aQTL-enriched RBPs (Fig. 5a), 
we found that 1 tumor suppressor, La-related protein 4 (LARP4), 
with binding sites primarily within 3′UTR regions (Supplementary 
Fig. 18), was selectively bound to 3′aQTL-containing regions across 
most tissues. LARP4 is an RBP that binds to the poly(A) tail of 
mRNA molecules46 and regulates mRNA translation; however, to 
our knowledge, its role in APA regulation has not yet been reported. 
Our observation that LARP4 binding involves regions enriched 
with 3′aQTLs suggests that LARP4 might be an APA regulator. 
Importantly, our approach cannot distinguish whether LARP4 APA 
regulation is mediated through impacting poly(A) site choice in the 

Fig. 5 | LARP4 is an APA regulator. a, Heatmap showing the 3′aVariant significance for RBPs identified by ENCODE in each tissue. The left bar shows 
the color code for each tissue; the top color bar represents the K562 and HepG2 cell lines, separately. Values in the heatmap represent the degree of 
enrichment for 3′aQTLs in RBP binding peaks compared with the control. b, PCR screening gel of clonal 293T lines with homozygous FLAG-LARP4. The 
primers flanking the integration site of a FLAG epitope tag at the N terminus of the LARP4 TSS were used. The representing gel of parental 293T cells, a 
heterozygous targeted line and a homozygous line (n = 3 from 12 clonal lines screened) are shown. c, Western blot analysis of 293T cells transfected with 
either control or LARP4 siRNA to knock down endogenous LARP4 protein. Protein lysates were extracted from whole cells after 72 h of knockdown. The 
gel represents one of two effective siRNAs tested, as shown in the source data files. d, Scatterplot analysis of PAC-seq data comparing distal poly(A) site 
usage between control and LARP4 knockdown cells. e, Representative genome browser images of the PPIE gene, whose poly(A) is regulated by LARP4 and 
binds with LARP4, as assessed by LARP4 CLIP-seq. f–h, Predicted effects of three 3′aQTLs located within the LARP4 binding sites. Each box plot represents 
the PDUI differences in relation to the SNP genotypes (n = 431 for SLC9A3R2 (f), n = 396 for PPIE (g) and n = 431 for HSDL1 (h)). The center horizontal 
lines represent the median values and the boxes span from the 25th to the 75th percentile. The whiskers extend to 1.5× IQR (bottom). i, Quantitative 
RT–qPCR analysis showing the altered APA regulation of three genes in response to CRISPR genome editing to introduce the 3′aQTL that was predicted to 
alter LARP4 binding. The 3′aQTL of each gene was targeted by two independent gRNAs and each gRNA editing was repeated (n = 3, shown by each dot) 
biologically. Data are presented as the mean ± s.d. j, Western blot analysis of nuclear and cytosolic extraction from the homozygous FLAG-LARP4 293T cell 
line. LARP4 subcellular localization was examined by anti-FLAG M2 antibody. The FLAG immunoprecipitates from each fractionation were subjected 
to mass spectrometry for orthogonal analysis, which confirmed the results of the western blot through definitive peptide identification. k, Functional 
annotation of the enrichment analysis for LARP4-associated proteins, based on the mass spectrometry results.
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nucleus or through regulating differential stability of short/long 
mRNA isoforms in the cytoplasm. To test the hypothesis that LARP4 
regulates APA, we first CRISPR-engineered 293T cells to harbor 

a single FLAG epitope tag within both copies of the endogenous 
LARP4 gene (Fig. 5b). We then transfected these cells with either 
control small interfering RNA (siRNA) or LARP4-targeting siRNA 
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and observed the robust depletion of FLAG-LARP4 (Fig. 5c). RNA 
was isolated from both control and knockdown cells and analyzed 
using 3′-end sequencing (poly(A)-ClickSeq (PAC-seq))47. Using 
PAC-seq, we observed broad changes in poly(A) site usage after 
knockdown of LARP4, which is consistent with a role for LARP4 
in APA regulation (Fig. 5d). Importantly, several of the genes that 
contain 3′aQTLs that are predicted to alter LARP4 binding were 
also found to exhibit robust APA in response to LARP4 knockdown  
(Fig. 5e and Extended Data Fig. 9). To further test the model that 
LARP4 can regulate APA, we focused on three genes that exhibit 
changes in APA after LARP4 knockdown and contain 3′aQTLs 
within their LARP4 binding sites, as assessed using the LARP4 
CLIP-seq data (Fig. 5f–h). We designed CRISPR-based homolo-
gous recombination templates that would allow the introduction 
of the LARP4 3′aQTL into 293T cells (Supplementary Table 5).  
Cells transfected with Cas9, the homologous recombination 
template and either of two independent single-guide RNAs 
(sgRNAs) were selected and APA was assessed using quantitative 
reverse-transcription PCR (RT–qPCR). In all three cases, we could 
detect notable changes in the distal poly(A) site selection, which 
agreed with the predicted effects of 3′aQTLs (Fig. 5f–i), suggesting 
that the 3′aQTL is sufficient to alter APA regulation. Finally, we gen-
erated nuclear and cytoplasmic extracts from FLAG-LARP4 cells, 
purified LARP4 (using FLAG affinity resin) and analyzed the puri-
fied complexes using mass spectrometry (Fig. 5j and Supplementary 

Table 6). Consistent with previous reports, LARP4 was primarily, 
but not exclusively, cytoplasmic, and we could robustly detect asso-
ciated proteins involved in poly(A)-binding. Surprisingly, we also 
detected numerous components of the cleavage and polyadenyl-
ation machinery associated with LARP4, suggesting a potential 
direct role in APA regulation (Fig. 5k). Altogether, these results sup-
port a function of LARP4 in APA regulation and further validate the 
use of 3′aQTLs as a discovery tool for APA regulators.

3′aQTLs can explain a significant proportion of disease heri-
tability. The GWAS approach has commonly been used to asso-
ciate genetic variants with complex human traits and diseases. 
However, explaining how these genetic variations, particularly 
noncoding variations, contribute to specific phenotypes can be dif-
ficult. We hypothesized that 3′aQTLs could be used to interpret 
GWAS noncoding variants, particularly those located near 3′UTRs 
(Supplementary Figs. 19 and 20). In this study, we compiled GWAS 
summary statistics for 23 common human diseases and traits from 
previously published studies (Supplementary Table 7) and evaluated 
the enrichment of 3′aVariants within trait-associated GWAS SNPs 
for each tissue using functional genome-wide association analy-
sis48. We identified the enrichment of 3′aVariants within 11.5% of 
tissue-trait pairs. When further compared with known eVariants 
that are enriched for these traits, we observed that, overall, eQTLs 
had larger effects than 3′aQTLs for 26.5% of the tissue-trait pairs 
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percentile. The whiskers extend to 1.5× IQR (bottom). n = 46 tissues examined.
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examined. However, in 9.8% of pairs, we found that 3′aQTLs 
exhibited the increased enrichment of GWAS SNPs compared with 
eQTLs (Supplementary Table 8), including those associated with 
Alzheimer’s disease and rheumatoid arthritis. Notably, many of 
the 3′aVariants were enriched in tissues relevant to their respec-
tive diseased states, such as the brain putamen (basal ganglia) for 
Alzheimer’s disease and the pituitary gland for rheumatoid arthri-
tis (Fig. 6a,b). Of note, 3′aVariants were also enriched in less bio-
logically relevant tissues, which may represent common 3′aVariants 
across many tissues or new trait-associated tissues2.

To quantify the proportion of regulatory variations associated 
with heritability for each trait, we conducted a partitioned heri-
tability analysis, using LD score regression49. Of the traits exam-
ined, the median range of SNP heritability that could be explained 
by 3′aQTLs, sQTLs and eQTLs was 3–7, 13–25 and 10–19% per 
trait, respectively. Notably, 3′aQTLs were particularly effective for 
explaining a large proportion of heritability associated with several 
autoimmune diseases, such as ulcerative colitis, primary biliary 
cholangitis and Alzheimer’s disease. For some diseases, such as mul-
tiple sclerosis, 3′aQTLs contributed little to heritability (Fig. 6c and 
Extended Data Fig. 10). Taken together, although the role of APA in 
the modulation of these diseases has been studied at the single-gene 
level, such as for tau in Alzheimer’s disease50 and TCF7L2 in type 2 
diabetes51, our results suggested that 3′aQTLs can explain a signifi-
cant proportion of disease-associated variants.

Many trait-colocalizing 3′aQTLs are independent of gene 
expression. The enrichment of 3′aQTLs within disease-associated 
loci provide disease-specific knowledge about the overall impact 
of 3′aQTLs but does not necessarily imply a causal relationship. 
Therefore, we investigated the extent to which 3′aQTLs may func-
tion as causal variants for human phenotypes. We used colocal-
ization analysis52, which identifies 3′aQTLs that share the same 
putative causal variants with trait-associated signals, to examine 15 
complex diseases and traits with known minor allele frequencies 
(MAFs). Of note, the colocalization model has limited power for 
the identification of multiple causal variants per gene. In total, 801 
trait-associated variants colocalized with either eQTL or 3′aQTL 
signals. Consistent with previous results1, 57% of trait-associated 
variants colocalized with eQTLs in 1 or more tissues. Interestingly, 
16.1% of trait-associated variants colocalized with 3′aQTLs in at 
least 1 tissue (Fig. 7a). Of note, this 3′aQTL colocalization may still 
be driven by eQTLs or sQTLs (Supplementary Fig. 21). We found 
that 14 colocalizing 3′aQTLs were overlapped with pQTLs34. For 
example, rs503366 is not only a pQTL for MTRF1L, but also the lead 
3′aVariant that colocalized with bipolar disorder GWAS variants 
(the posterior probability of a model with one shared causal vari-
ant (PP4) = 0.922). We also found that 83.7% (1,019 out of 1,218) 
of 3′aQTL-colocalizing genes were not eQTL colocalizing genes  
(Fig. 7b and Supplementary Table 9). We separated all 3′aGenes 
into two groups based on whether they overlapped with eQTLs. 
Within each group, we analyzed the differences of APA usage and 
gene expression with different 3′aQTL alleles. We observed no 
APA usage differences between eQTL-overlapped 3′aGenes and 
non-eQTL-overlapped 3′aGenes (P = 0.06; Supplementary Fig. 22a). 
We further found that eQTL-overlapped 3′aGenes tended to have 
notable gene expression changes (P < 2.2 × 10−16) (Supplementary 
Fig. 22b), whereas non-eQTL-overlapped 3′aGenes had almost 
no associated gene expression changes. To explore the potential 
regulatory mechanisms, we cross-referenced the 3′UTR regions 
of 3′aGenes with the TargetScan human v.6.2 (ref. 53) miRNA 
binding sites and ENCODE RBP CLIP-seq peaks. We found that 
eQTL-overlapped 3′aGenes have overall greater miRNA binding 
site density within the 3′UTR region than non-eQTL-overlapped 
3′aGenes (P = 5.695 × 10−5; Supplementary Fig. 22c). We did not 
find any enrichment of RBP binding sites. These results suggest that 

eQTL-overlapped 3′aGenes tend to affect gene expression through 
miRNA-mediated regulation but not through RBP regulation.

UBE2L3 is a representative example of the 16.3% of genes 
that colocalized with both 3′aQTLs and eQTLs. UBE2L3 is an 
E2 ubiquitin-conjugating enzyme that promotes the activation of 
nuclear factor kappa B signaling during immune responses54. The 
rs66534072 locus in UBE2L3 has been associated with gene expres-
sion levels and confers risk for autoimmune diseases55. However, 
the mechanisms through which these genetic variants affect gene 
expression are unknown. We determined that UBE2L3 can be 
subject to APA and can exhibit dynamic 3′UTR use among dif-
ferent individuals. Moreover, the lead 3′aQTL SNP, rs66534072, 
was significantly correlated with 3′UTR use in UBE2L3 (Fig. 7c). 
Specifically, the C allele was associated with the shortening of the 
UBE2L3 mRNA 3′UTR, whereas the G allele was associated with 
the lengthening of the 3′UTR. We examined the tissues where 
rs66534072 serves as a 3′aQTL for UBE2L3 and found that most are 
known to be affected by autoimmune diseases.

Most 3′aQTL trait-colocalized gene pairs are specific to 3′aQTLs 
and not eQTLs. For instance, MMAB encodes an enzyme involved 
in adenosylcobalamin formation, which is crucial for cholesterol 
degradation56. A total of 288 3′aQTLs were found to associate with 
MMAB 3′UTR use and were directly correlated with total choles-
terol level GWAS loci on chromosome 12 (Fig. 7d). Similarly, vari-
ants on chromosome 16 that were associated with body mass index 
(BMI) also colocalized with 3′aQTLs that regulate 3′UTR length 
changes in ADCY9 (Fig. 7e). We also observed a strong colocaliza-
tion pattern between 3′aQTLs in IRF1 and the significant GWAS 
loci for multiple autoimmune diseases, including ulcerative colitis, 
Crohn’s disease and inflammatory bowel disease (Fig. 7f). IRF1 
is induced by IFN-γ signaling and promotes innate and acquired 
immune responses57. In contrast, except in musculoskeletal tis-
sue, no strong association between eQTL and IRF1 expression was 
observed. Colocalization analyses of musculoskeletal tissue revealed 
no colocalization patterns between disease-associated loci and IRF1 
eQTLs. In contrast, colocalization patterns for IRF1 3′aQTLs and 
autoimmune diseases were identified in multiple tissues, including 
transformed fibroblasts (PP4 = 0.97). These results suggested that 
IRF1-associated 3′aQTLs, more than IRF1-associated eQTLs, can 
explain most of the effects of the IRF1 variations associated with 
these diseases. Collectively, our data suggest that many 3′aQTLs 
contribute to human diseases and traits, independent of their roles 
in the regulation of gene expression.

Discussion
We defined 3′aQTLs as the genetic basis for an emerging human 
molecular phenotype that is responsible for alternative 3′UTR 
usage. By reanalyzing large-scale GTEx data, using our DaPars 
v.2 algorithm, we identified 11,613 APA genes and approximately 
0.4 million 3′aQTLs across 46 human tissues. 3′aQTLs were 
found to be sufficient to alter APA regulation, as demonstrated by 
CRISPR-based experiments and saturation mutagenesis data. In 
contrast with other molecular QTLs, such as eQTLs, 3′aQTLs are 
highly enriched within 3′UTRs. Mechanistically, 3′aQTLs likely 
induce changes in 3′UTR usage by either modulating the strength 
of poly(A) signal motifs, RNA secondary structure or RBP bind-
ing sites. 3′aQTLs that reside outside of gene-transcribed regions 
are likely to involve a more complex mechanistic basis as evidenced 
by recent work revealing connections between DNA methylation, 
gene looping and APA regulation58,59. eQTLs are important molecu-
lar features associated with human phenotypic variations. In this 
study, we demonstrated that 3′aQTLs represent molecular features 
that contribute to phenotypic variation in human populations at 
an unexpectedly similar level as eQTLs. Furthermore, we also vali-
dated the use of 3′aQTLs as a discovery tool for identifying APA 
regulators, such as LARP4.
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We found that 3′aQTLs can explain a substantial propor-
tion of trait heritability. Colocalization analyses found that 16.1% 
of trait-associated loci colocalized with 1 or more 3′aQTLs in 
human tissues. Furthermore, very few of the 3′aQTL-colocalizing 
trait-associated loci overlapped with eQTLs, indicating that 
3′aQTLs and eQTLs are largely independent. We speculate that 
eQTL-independent 3′aQTLs regulate the stability, translation or 
cellular localization of target genes independently of the regulation 
of gene expression. Collectively, the results of our in-depth analyses 
of the genetic influence of APA events in 46 human tissues increase 
the fraction of common noncoding variations that can be associated 
with molecular phenotypes and suggest interpretations that explain 
how natural variations can shape human phenotypic diversity and 
tissue-specific diseases.
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Methods
Mapping of GTEx RNA-seq data. Original RNA-seq reads were aligned 
with the human genome (hg19/GRCh37) using STAR v.2.5.2b60, with the 
following alignment parameters: outSAMtype, BAM; SortedByCoordinate; 
outSAMstrandField, intronMotif; outFilterMultimapNmax, 10; 
outFilterMultimapScoreRange, 1; alignSJDBoverhangMin, 1; sjdbScore, 2; 
alignIntronMin, 20; and alignSJoverhangMin, 8. The resulting sorted BAM files 
were converted into bedGraph formats using BEDTools version 2.17.0 (ref. 61).

Covariate correction. To account for hidden batch effects and other unobserved 
covariates in each tissue, we first corrected the sample genotype for population 
structure. Briefly, we first removed sites marked as ‘wasSplit’ from the GTEx 
analysis freeze variant call format (VCF) using BCFtools v.1.3, leaving 39,741,769 
biallelic sites. The variants were further filtered with a call rate of >99% and MAF 
>5%; LD pruning was performed using PLINK v.2.0. The top three principal 
components from the principal component analysis were consistent with the 
known three main subpopulations, including White, Black or African American 
and Asian, in the GTEx samples. We further used PEER21 with sex, RNA integrity 
number, top 5 genotype principal components and genotyping platforms as the 
known covariates to estimate a set of latent covariates for the PDUI values in each 
tissue. The number of PEER factors was optimized based on suggestions from the 
GTEx Consortium1; for tissue sample sizes <150, 15 PEER factors were chosen. 
Thirty PEER factors were chosen if the sample size ranged from 150 to 250 and 35 
peer factors were chosen for >250 samples. We analyzed the correlation between 
PEER factors and covariates reported for the GTEx samples and noticed that many 
of these covariates were strongly associated with PEER factors, such as nucleic 
acid isolation batch and total ischemic time, which were associated across tissues 
(Extended Data Fig. 1). We also included three measurements for 3′Bias statistics: 
(1) 3′ 50-base normalization, which is the ratio between the coverage at the 3′-end 
and the average coverage of the full transcript, averaged over all transcripts; (2) 5′ 
50-base normalization, which is the ratio between the coverage at the 5′-end and 
the average coverage of the full transcript, averaged over all transcripts; and (3) the 
number of transcripts that have at least one read at their 5′-end. The inferred PEER 
factors were highly correlated with the 3′Bias statistics (Extended Data Fig. 1), 
indicating that most of the 3′Bias effects have been corrected by our PEER analysis.

Furthermore, to comprehensively evaluate the other genotypic covariates, we 
correlated the PEER factors with donor covariates in each tissue. We observed that 
our PEER factors were consistently correlated with several donor covariates such 
as donor death, ischemic time, Hardy scale, EBV immunoglobulin M antibody and 
age (Extended Data Fig. 2).

3′aQTL mapping for each tissue. A whole-genome sequencing variant file for 635 
individuals was obtained from the GTEx database of Genotypes and Phenotypes 
(dbGaP) website (phs000424.v7.p2), under the name ‘GTEx_Analysis_2016-01-15_
v7_WholeGenomeSeq_635Ind_PASS_AB02_GQ20_HETX_MISS15_PLINKQC.
vcf.gz’, from which 17 samples and all the variants that failed to pass the quality 
control step initially defined by the GTEx Consortium1 were removed. Any 
individuals with no RNA-seq data were also removed. 3′aQTL mapping was 
performed separately for each tissue. Subset VCF data for each tissue were 
extracted, using BCFtools. VCF files were transformed into an SNP matrix file, 
including genotyping information, using BioAlcidae v.2.27.1 (ref. 62). SNPs with a 
MAF of <0.01 were filtered and at least 10 counts per allele were required. We then 
tested associations for SNPs within an interval of 1 Mb from the 3′UTR region, 
with normalized PDUI values, in each tissue, using Matrix eQTL22, in a linear 
regression framework.

Permutation analysis was conducted to identify significant 3′aQTL-associated 
gene pairs. Individual labels were randomly sampled 1,000 times and the minimum 
P value for each SNP and gene was recorded after each 3′aQTL mapping. These 
empirical P values were adjusted using the qvalue v.2.0.0 R package63. Genes with 
a q < 0.05 were considered to be significant APA genes. All APA gene-associated 
3′aQTLs were subsequently identified with the FDR set to 5%.

Fine-mapping of causal variants to 3′aQTLs. We used SuSiE30 to fine-map 
3′aQTL. SuSiE can operate on individual-level data (genotypes and APA 
phenotypes) and can efficiently analyze loci containing many independent effect 
variables. We allowed a maximum of 10 independent effects in our analysis. 
Additionally, we verified our SuSiE results with causal variant identification in 
associated regions analysis64, which uses summary statistics (z-scores derived from 
3′aQTL association P values) and LD matrices but is limited to the detection of a 
small number of independent effects per region due to its computational  
capability constraints.

3′aQTL sharing and specificity analyses among tissues. 3′aQTL sharing and 
specificity among tissues were analyzed using MASH31. Briefly, we converted 
3′aQTL association statistics to MASH formats. Lead 3′aQTLs and random SNP 
sets for each APA gene were extracted from each tissue to calculate MASH priors. 
A total of 4,470 genes, with no data missing from any tissue, were retained to train 
the MASH model. Prior covariance matrices were inferred via Empirical Bayes 
matrix factorization, implemented in factors and loadings by adaptive shrinkage; 

the multivariate 3′aQTL model was constructed using MASH. Posterior effect sizes 
were computed by applying the trained model to the lead 3′aQTLs sets. MASH 
aims to elucidate the heterogeneity of 3′aQTL effect sizes across tissues (Fig. 2). 
With MASH, we can learn about which 3′aQTLs have tissue-specific effect sizes 
and which have effect sizes consistent across tissues. This provides interesting 
insights into the genetic architecture of APA in different tissues. The MASH model 
was trained on a large random subset of SNPs31, not the lead SNPs. The trained 
model was then applied to one lead SNP per gene for posterior inferences, to avoid 
dealing with LD between SNPs when more than one SNP in a gene was involved. 
Such ‘one effect per region’ simplification is widely accepted in a similar context to 
circumvent LD complications when it comes to evaluating association signals in a 
small region48,52,65. This essentially limits the scope of the investigation to a subset 
of 3′aQTLs but it is sufficient for our purpose to learn patterns of 3′aQTL sharing 
across tissues. If a lead SNP is only significant in one tissue and not the others, 
it will be considered a tissue-specific 3′aQTL; however, if the lead SNP is also 
significantly associated with APA in other tissues, even though the associations in 
these tissues are not as strong as the tissue based on which it is selected, it will be 
considered a shared 3′aQTL among tissues.

To examine whether MASH-estimated magnitudes were affected by read depth, 
we first downsampled 80% of the raw reads in each sample for the 5 representative 
tissues and reran the whole analysis. The correlations between the same tissues 
with different sequencing depths (100 versus 80%) were much stronger than 
the correlations between different tissues with the same sequencing depths 
(Supplementary Fig. 9a). We also downsampled the samples in each tissue to match 
the lowest coverage level, 15 million reads, among the included tissue samples. Still, 
we observed much stronger correlations between the same tissues with different 
sequencing depths than between different tissues at the same sequencing depth 
(Supplementary Fig. 9b).

Prediction of trans regulator of APA. For a gene G in a tissue type, all samples 
were ranked based on the expression levels of gene G. The top 10 most highly 
expressed samples and bottom 10 least expressed samples were chosen as the 
two groups. If the mean gene expression fold change between the two groups 
was >2 with P < 0.05, these two groups were treated as control and knockdown 
groups. Then, the PDUI values between the groups could be compared to identify 
significant dynamic APA genes between the high and low expression groups of 
gene G. Using this strategy, we calculated the number of 3′UTR shortening or 
lengthening effect of each gene, which regulates significant dynamic APA events 
between the high and low expression groups. The gene will be predicted as a trans 
regulator of APA if P < 0.05. We have validated our method in a few known  
APA regulators, such as CSTF2, which was described as an APA regulator 
promoting 3′UTR shortening. We observed that there was a marked shift of 3′UTR 
shortening in individuals with highly expressed CSTF2 (Extended Data Fig. 8a). 
We also investigated our newly detected APA regulator, LARP4. We often observed 
many APA events when comparing LARP4high and LARP4low individuals (Extended 
Data Fig. 8b).

Colocalization analyses. We utilized a Bayesian colocalization approach to 
identify GWAS signals that could exhibit the same genetic effects between eQTLs 
and 3′aQTLs, using the coloc v.3.2-1 R package52. The full summary statistics for 15 
GWAS were used when the MAF was available. For each GWAS trait, we extracted 
the sentinel SNPs, which were defined as GWAS SNPs with P < 5 × 10−8 and located 
at least 1 Mb away from more significant variants. The colocalized signals were 
searched for within the 100-kb surrounding region of sentinel SNPs. As defined 
by the coloc method, five posterior probabilities (PPs) were calculated. PP0 
represents the null model of no association. PP1 and PP2 represent the probability 
that causal genetic variants are either associated with disease signals only or with 
3′aQTLs only, respectively. PP3 represents the probability that the genetic effects 
of disease signals and 3′aQTLs are independent and PP4 represents the probability 
that disease signals and 3′aQTLs share causal SNPs. The genes were defined as 
colocalization events if PP4 ≥ 0.75 and PP4/(PP4 + PP3) ≥ 0.9. Region visualization 
plots were constructed using LocusZoom v.1.4 (ref. 66). LDs between reference 
SNPs and 3′aQTLs were calculated using PLINK67.

Cell culture and cloning. The HEK 293T cell line (catalog no. CRL-3216; ATCC) 
was grown in high-glucose DMEM supplemented with 10% FCS and 50 U ml−1 
penicillin-streptomycin (Thermo Fisher Scientific). The oligonucleotides used 
for cloning are listed in Supplementary Table 5. pST1374-NLS-flag-linker-Cas9 
and pGL3-U6-sgRNA-PGK-puromycin plasmids for CRISPR targeting were 
a gift from X. Huang (plasmid nos. 44758 and 51133, respectively; Addgene). 
Each pair of oligonucleotides of sgRNAs was annealed and cloned into a 
pGL3-U6-sgRNA plasmid. The identities were confirmed by Sanger sequencing. 
LARP4 RNA interference experiments were performed using a two-hit strategy, as 
described previously68. Briefly, 60 pmol of LARP4 siRNA (SASI_Hs01-00187288; 
Sigma-Aldrich) was diluted in 100 μl of Opti-MEM. For each siRNA, 3 μl of 
RNAiMAX (Thermo Fisher Scientific) was diluted in 100 μl of Opti-MEM and 
incubated for 5 min at room temperature. Diluted siRNA and RNAiMAX were 
mixed and incubated for another 20 min at room temperature. Cells were seeded in 
12-well plates at a density of 4 × 105, in 1 ml of regular growth medium, immediately 
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before adding the complexes. Transfected cells were incubated at 37 °C and 5% 
CO2 for 24 h. For the second forward transfection, 90 pmol of siRNA and 4.5 μl of 
RNAiMAX were used to form transfection complexes, as described for the first 
transfection. The medium was replaced with fresh medium before adding the 
complexes. After another 24 h, cells were expanded to 6-well plates and grown for 
a total of 72 h before being collected. To check protein expression, anti-FLAG-HRP 
M2 (catalog no. A8592; Sigma-Aldrich) in 1:5,000 dilution, anti-alpha Tubulin 
(catalog no. ab15246; Abcam) in 1:2,000 dilution and anti-GAPDH (catalog no. 
AM4300; Thermo Fisher Scientific) in 1:4,000 dilution was used for western blotting.

CRISPR genomic editing. CRISPR was used to precisely incorporate the FLAG 
sequence (gat tac aag gat gac gac gat aag), as described previously69, into all 
endogenously expressed LARP4 proteins, at the N terminus. Briefly, a 100-bp 
genomic sequence surrounding the translation start site (TSS) was input into  
the CRISPOR program (http://crispor.tefor.net/crispor.py) for guide RNA  
(gRNA) prediction.

Two gRNAs were selected based on the following: (1) the shortest distance 
between the Cas9 cutting site (NGG is the protospacer adjacent motif) and 
the FLAG insertion site; and (2) the specificity score, based on the number of 
off-target effects. To design the single-strand DNA donor template, a 200-bp 
genomic sequence (including the 24 bases of the FLAG sequence in the middle) 
surrounding the TSS was synthesized by Integrated DNA Technologies. The 
protospacer adjacent motif on the donor template was mutated silently to avoid 
being attacked by transfected gRNA/Cas9. Equal amounts of gRNA and Cas9 
plasmids (720 ng in total) were mixed with 10 pM (approximately 660 ng) of 
donor template and transfected into 4 × 105 HEK 293T cells in 24-well plates with 
Lipofectamine 2000. Cells were moved to 6-well plates after overnight incubation; 
selection (10 μg ml−1 of blasticidin and 1 μg ml−1 puromycin) was started 24 h after 
transfection for a total of 48 h. Cells were expanded in regular growth medium, 
without selection antibiotics. FLAG western blots were performed to determine the 
signal from pools of cells and confirm the signal from clonal lines. Genomic DNA 
was extracted from those clonal lines with FLAG signals on western blots. PCR was 
performed to amplify the approximately 200-bp fragment containing the FLAG 
sequence; the product was resolved on agarose gels to determine the homogeneity 
of FLAG insertion on all alleles of the target gene.

For 3′aQTL alterations, double-stranded DNA donor templates (approximately 
500 bp from each of three genes) were amplified from HEK 293T genomic DNA. 
3′aQTLs were designed to be located approximately two-thirds downstream from 
the 5′-end for higher CRISPR efficiency70. PCR-based mutagenesis was performed 
to alter the 3′aQTLs. Transfection and selection were performed as described 
above. RNA and genomic DNA were extracted from a pool of cells for distal PAS 
usage measurements and Sanger sequencing, respectively.

PAC-seq. To identify alternative polyadenylation sites, PAC-seq47,71 was adopted 
to sequence LARP4 knockdown samples. Briefly, poly(A) mRNA was enriched 
from 5 μg of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation 
Module (New England Biolabs), as described by the manufacturer’s protocol. All 
enriched mRNA was reverse-transcribed into complementary DNA. First, 2 μl 
of a 5-mM mixture containing 3′-azido-2′,3′-dideoxyadenosine-5′-triphosphate 
(N-4007, N-4008 and N-4014; TriLink Biotechnologies) and deoxynucleoside 
triphosphate, at a ratio of 1 to 5, was added to the RNA sample together with 
1 μl of 100 μM 3′Illumina_4N_21T primer. Regular RT–qPCR steps, using 
SuperScript III, were performed. The sample was treated with 1 μl of ribonuclease 
H (Thermo Fisher Scientific) for 20 min at 37°C, followed by 10 min at 80°C for 
inactivation. cDNA was purified using AMPure XP beads, as described by the 
manufacturer’s instructions, and eluted in 12 μl of 50 mM of HEPES, pH 7.4. The 
click reaction was performed by first adding 23 μl of premixed Click-Adaptor 
(20 μl of dimethylsulfoxide and 3 μl of 5 μM of Click-Adaptor) to 10 μl of cDNA 
and then adding 2.4 μl of premixed catalyzer (0.4 μl of 50 mM of vitamin C and 
2 μl of 10 mM of Copper(II)-TBTA (Lumiprobe)). After a 30-min incubation at 
room temperature, 2.4 μl of catalyzer was added to the reaction to boost reaction 
efficiency. 5′ Clicked cDNA was purified using AMPure XP beads.

PCR amplification was performed using 5′ short universal primer and 3′ 
indexing primer, which has a unique index for each sample. OneTaq 2X Master 
Mix (New England Biolabs) was used to amplify the library under the following 
conditions: 1 min at 94 °C, 30 s at 55 °C, 10 min at 68 °C and 16 cycles of 30 s at 94 °C, 
30 s at 55 °C, 2 min at 68 °C. Finally, the PCR extension was performed at 68 °C for 
5 min, followed by 4 °C, indefinitely. The library was purified using AMPure XP 
beads; size selection was performed on 2% E-Gel EX Agarose Gels (Thermo Fisher 
Scientific), targeting fragments between 200 and 400 bp. The library was extracted 
from the gel using ZYMO DNA Clean & Concentrator 5 and quantified by a Qubit 
3.0 Fluorometer (Thermo Fisher Scientific) before being sequenced on an Illumina 
next-generation sequencer. PAC-seq data were analyzed with the differential 
poly(A) clustering DPAC72 pipeline using the exon-centric approach, with the --P 
--M --C --A --B and --D options. The results were filtered such that genes or exons 
required a minimum of 10 mean reads in each sample, a 1.5-fold change and an 
adjusted P < 0.01 to be considered significantly differentially expressed. Genes with 
more than one PAS also required a percentage distal PAS usage change of 20% to be 
considered a change in the length of the 3′UTR.

Nuclear and cytosolic protein extraction. Cells were washed and collected in 
cold PBS and resuspended in a fivefold cell pellet volume of Buffer A (10 mM of 
Tris, pH 8, 1.5 mM of MgCl2, 10 mM of KCl, 0.5 mM of dithiothreitol (DTT) and 
0.2 mM of phenylmethylsulfonyl fluoride). Cells were allowed to swell during a 
15-min rotation at 4 °C, then pelleted at 1,000g for 10 min, after which cells were 
homogenized in twofold the original cell pellet volume Buffer A with a Dounce 
pestle B for 20 strokes on ice. Nuclear and cytosolic fractions were separated 
by centrifugation at 2,000g for 10 min. For the cytosolic fraction, 10× Buffer B 
(300 mM of Tris, pH 8, 1.4 M of KCl and 30 mM of MgCl2) was added to the 
supernatant to a final concentration of 1× Buffer B. Debris was removed by 
centrifugation at 15,000g for 30 min at 4°C. For the nuclear fraction, the pellet was 
washed once with Buffer A before resuspending the original cell pellet volume of 
Buffer C (20 mM of Tris, pH 8, 420 mM of NaCl, 1.5 mM of MgCl2, 25% glycerol, 
0.2 mM of EDTA, 0.5 mM of phenylmethylsulfonyl fluoride and 0.5 mM of DTT). 
The sample was homogenized with a Dounce pestle B for 20 strokes on ice and 
rotated for 30 min at 4 °C before centrifugation at 15,000g for 30 min at 4 °C. 
Supernatants were collected from both fractions and subjected to dialysis in Buffer 
D (20 mM of HEPES, 100 mM of KCl, 0.2 mM of EDTA, 0.5 mM of DTT and 20% 
glycerol) overnight at 4°C. Lysates were centrifuged again at 15,000g for 3 min at 
4 °C to remove any precipitates before downstream applications.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw GTEx RNA-seq and genotype files are available to authorized users through 
dbGaP release, under accession no. phs000424.v7.p2. A list of 3′aQTLs, lead 
3′aQTLs and their associated APA genes, isoform usage-controlled 3′aQTLs 
and expression-controlled 3′aQTLs are freely available at Synapse (accession no. 
syn22236281; https://doi.org/10.7303/syn22236281). Raw and processed PAC-seq 
data for the LARP4-depletion experiment have been deposited with the Gene 
Expression Omnibus under accession no. GSE139548. The proteomics data have 
been deposited with the MassIVE database under accession no. MSV000087000. A 
website portal dedicated to trait- and disease-associated 3′aQTLs can be accessed at 
https://wlcb.oit.uci.edu/3aQTL/index.php. Source data are provided with this paper.

Code availability
The open-source DaPars v.2.0 program is freely available at https://github.
com/3UTR/DaPars2.
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Extended Data Fig. 1 | Known technical covariates associated with inferred PEER factors in each tissue. The R2 value in each cell represents the 
percentage of variance explained for each tissue/covariates pair. Only the most relevant sample-specific covariates were used. Gray color represents 
insufficient data to predict correlations. Each color code below indicates a tissue of origin.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNATURE GEnETICS

Extended Data Fig. 2 | Known donor covariates associated with inferred PEER factors in each tissue. The R2 value in each cell represents the percentage 
of variance explained for each tissue/covariate pair. Only the most relevant donor-specific covariates were used. Gray color represents insufficient data to 
predict correlations. Each color code below indicates a tissue of origin.
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Extended Data Fig. 3 | PEER factors for gene expression associated with PEER factors for PDUI in each tissue. The R2 value in each cell represents the 
correlation between the top PEER factors for gene expression (rows) and the most relevant PEER factors for PDUI for each tissue (columns). Each color 
code below indicates a tissue of origin.
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Extended Data Fig. 4 | Enrichment of 3′aQTL in different categories of mutagenesis variants annotations. The enrichment score represents the log odd 
ratio and accessed by the program Torus. The x-axis represents three categories of variants with different effects in predicting APA isoform log fold change 
due to the variant. Each color code indicates a tissue of origin. The saturation mutagenesis data with log isoform fold change < 0.15 are not available from 
Bogard et al.
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Extended Data Fig. 5 | The sharing magnitude of 3′aQTLs using different FDRs at 0.01, 0.005, 0.001. Histograms showing the estimated proportion of 
tissues that share lead 3′aQTLs /eQTLs, by magnitude, with other tissues, among all 46 examined tissues, among non-brain tissues only, and among brain 
tissues only.
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Extended Data Fig. 6 | sQTL have a distinct genomic distribution and functional enrichment compared with 3′aQTL. a, Relative position distance 
between sQTL and their associated genes. TSS represents the transcription start site; TES represents the transcription end site. Red line represents 
randomly selected positions within the +/− 1Mb window for each gene. b, 3′aQTL and sQTL enrichment in functional annotations. The enrichment 
is shown as mean with SD across tissues. The proportion of variants was also included for 3′aQTL and sQTL. Data are presented as mean value +/− 
Standard deviation. n = 46 tissues examined.
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Extended Data Fig. 7 | 3′aQTLs are validated by saturation mutagenesis data. a, Saturation mutagenesis of the ADI1 PAS. Shown above is the measured 
wild-type (black) and variant cleavage distribution (red) for the SNP rs1130319. The heatmap below shows the measured isoform fold changes as a result 
of each SNP. The red box color indicates the SNP rs1130319.
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Extended Data Fig. 8 | Trans-regulator APA prediction. a, Scatterplot of the percentage of distal polyA site usage index (PDUI) in CSTF2 over-expressed 
and low-expressed samples where mRNA significantly shortened (blue) or lengthened (red) are colored. b, Scatterplot of PDUI changes for LARP4 
over-expressed and low-expressed samples were shown.
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Extended Data Fig. 9 | Representative genome browser images of the SLC9A3R2 gene. SLC9A3R2 APA is regulated by LARP4 and binds LARP4, as 
assessed by LARP4 CLIP-seq.
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Extended Data Fig. 10 | A partitioned heritability plot for the percentage of phenotypic variance can be explained, for 35 traits, by 3′aQTLs, eQTLs, and 
sQTLs in aggregate. The trait/tissue pairs with heritability not significantly greater than 0 are removed. Centre horizontal lines show median values, boxes 
span from the 25th percentile to the 75th percentile. Whiskers extend to 1.5 × IQR (bottom), where IQR is the interquartile range. n = 46 tissues examined.
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