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Single-cell RNA sequencing (scRNA-seq) facilitates the study of transcriptome
diversity in individual cells. Yet, many existing methods lack sensitivity and
accuracy. Here we introduce SCALPEL, a Nextflow-based tool to quantify and
characterize transcript isoforms from standard 3’ scRNA-seq data. Using syn-
thetic data, SCALPEL demonstrates higher sensitivity and specificity compared
to other tools. In real datasets, SCALPEL predictions have a high agreement
with other tools and can be experimentally validated. The use of SCALPEL on
real datasets reveals novel cell populations undetectable using single-cell gene
expression data, confirms known 3’ UTR length changes during cell differ-
entiation, and identifies cell-type specific miRNA signatures regulating isoform

expression. Additionally, we show that SCALPEL improves isoform quantifi-
cation using paired long- and short-read scRNA-seq data. Overall, SCALPEL
expands the current scRNA-seq toolkit to explore post-transcriptional gene
regulation across species, tissues, and technologies, advancing our under-
standing of gene regulatory mechanisms at the single-cell level.

Alternative polyadenylation (APA) is a general mechanism of post-
transcriptional regulation that significantly contributes to the
diversification of gene expression patterns under diverse physiolo-
gical and pathological conditions'. APA defines the end of transcripts
by selecting one of the available polyA sites (PAS) at the 3’ end of
genes, resulting in the generation of multiple mature RNA isoforms
from the same pre-mRNA? These isoforms may have different coding
regions or contain distinct 3’ untranslated regions (3" UTRs), which
contain regulatory elements influencing mRNA stability, localization,
and translational efficiency®~. Transcriptomic studies have demon-
strated that APA is highly regulated in a tissue specific manner® and
plays a crucial role in various biological processes, including cellular
differentiation’, development®'°, and response to environmental
cues'. Alterations in APA patterns have been linked to various

diseases, where they can lead to aberrant gene expression and even
cancer'>®,

The development of high-throughput single-cell transcriptomics
technologies (scRNA-seq) has led to the emergence of computational
methods to characterize the transcriptomic profile of thousands of
individual cells in a single experiment. While these methods are
mainly used to quantify gene expression, 3’ tag-based scRNA-seq
protocols such as Drop-seq” or 10x Genomics provide opportunities
to study 3’ end isoform diversity. Currently, only a few computational
tools allow to study isoform diversity generated by APA in scRNA-seq
data and most of them face significant drawbacks. They often fail to
detect polyadenylation sites (PAS) with low read coverage due to the
sparse nature of single-cell data and they lack the precision needed to
accurately pinpoint the exact PAS locations, leading to potential
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misidentification and incomplete characterization of isoform
diversity'®™’. Alternative methods based on isoform quantification
such as scUTRquant® have been shown to be more powerful in
quantifying transcript diversity from scRNA-seq data. Yet, the main
power of this method relies on an improved curated 3’ end annotation
that is not available for most species.

Here, we present SCALPEL, a Nextflow workflow” to quantify iso-
form expression using commonly used 3’ tag-based scRNA-seq data.
Comparison of SCALPEL to other existing tools using synthetic data
shows that SCALPEL predictions have a higher sensitivity than other
tools while maintaining a high specificity. On real data, SCALPEL pre-
dictions show a strong agreement with other tools and can be validated
experimentally. Our analysis revealed that isoform-based analysis of
single-cell data recapitulates known biological processes such as 3’ UTR
lengthening during mouse spermatogenesis, identify novel cell popu-
lations, and reflect post-transcriptional regulatory processes such as
microRNA function. Furthermore, we also demonstrate how SCALPEL
can be used to improve isoform quantification at the single-cell level
using paired long and short scRNA-seq data. Together, our work high-
lights the versatility of SCALPEL across datasets and highlights the
power of isoform-based analysis in single-cell studies.

Results

SCALPEL, a new computational tool for isoform quantification

using scRNA-seq data

SCALPEL is a new computational Nextflow workflow” to quantify
transcript isoforms from single-cell data. It takes as input the digital
gene expression matrix (DGE) generated by a scRNA-seq processing
pipeline such as CellRanger or Drop-seq tools and the mapped reads in
BAM format and uses them to decompose gene expression into iso-
form expression data (Fig. 1a). SCALPEL workflow is divided into three
main modules (Fig. 1b). In the first module, raw sequencing data and
annotation files are processed to perform bulk quantification of the
annotated isoforms. These isoforms are then truncated and collapsed,
giving rise to a set of distinct isoforms with different 3’ ends for
quantification at single-cell resolution. In the second module, scCRNA-
seq reads are mapped on the set of selected isoforms and reads
coming from pre-mRNAs or resulting from internal priming (IP) events
are discarded. In the last module, isoforms are quantified in individual
cells and an isoform digital gene expression matrix (iDGE) is generated
(Fig. S1). The iDGE can be processed to perform downstream single-cell
level analyses such as dimensionality reduction, clustering, marker
discovery and trajectory inference. Furthermore, it can also be used to
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Fig. 1| SCALPEL pipeline quantifies transcript isoforms at the single-cell level.
a Schematic representation of SCALPEL function. SCALPEL decomposes conven-
tional scRNA-seq data mapped to a gene to the different isoforms that are
expressed. b SCALPEL Nextflow pipeline diagram. SCALPEL is composed of four
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workflows performing (1) annotation preprocessing (black line); (2) read pre-
processing to discard artifacts and reads derived from pre-mRNAs (blue line); (3)
quantification of isoforms in individual cells (green line); and (4) characterization of
differential isoform usage (orange line).
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study differential isoform usage (DIU) and visualize isoform coverage
using additional functions included in SCALPEL repository. The main
novelty that SCALPEL brings is the pseudo-assembly of reads with the
same cell barcode (CB) and unique molecular identifier (UMI). This
approach helps in the assignment of UMIs to individual isoforms by
considering the global transcript structure and jointly modeling the
distance of the reads with the same UMI to the 3’ end of the transcripts
(Fig. S1).

SCALPEL shows accurate quantification of isoforms at single-cell
resolution

To assess the performance of SCALPEL to quantify isoforms in scRNA-
seq data, we generated synthetic single-cell isoform expression data-
sets. First, we simulated single-cell gene expression values for 6000
cells belonging to two different cell populations using Splatter®
v1.28.0. (Fig. 2a). These cells expressed a total of 6560 genes and
12,320 isoforms including genes with changes in expression and/or
isoform usage across cell populations (Fig. 2b and Supplementary
Data 1). Using this strategy, we generated three datasets with different
drop-out rates: one similar to a real 10x dataset used as reference® and
two other datasets with lower coverage (Figs. 2c and S2a). Given that
SCALPEL uses as input mapped reads, we developed a new method,
scr*eam (https://github.com/plasslab/scr4eam), to generate isoform-
aware realistic scCRNA-seq reads for the synthetic iDGEs (Fig. S2b, c). We
used these three datasets to compare SCALPEL isoform quantifications
with simulated isoform quantification. In all datasets, we find a high
correlation between simulated isoform abundances and the isoform
quantification provided by SCALPEL (Pearson correlation coefficient
r=0.8, Fig. 2d-f).

Benchmark of SCALPEL using synthetic data shows higher sen-
sitivity and specificity than other tools

We used the generated synthetic datasets to benchmark the perfor-
mance of SCALPEL against existing tools developed to quantify APA in
scRNA-seq data®'®?**%, Considering the underlying quantification
strategy, these methods can be divided into peak-calling based tools
(Sierra, scAPA, scAPAtrap, SCAPTURE, and scDaPars), and isoform
quantification tools (scUTRquant) (Supplementary Data 2). Following
the quantification of peaks or isoforms according to the default para-
meters of each tool, we performed DIU analysis. In the case of
scUTRquant®, which uses an extended curated 3° UTR annotation (3’
UTRome), we performed the benchmarking using both the 3’ UTRome
(scUTRquant) and the same annotation as the other tools (scUTRquant*).

Overall, our analyses show a clear difference in sensitivity between
peak- and isoform-based methods. Peak-based methods quantified
fewer genes and isoforms than isoform-based methods, which showed
similar sensitivity (Fig. 2g, h). Some of the sensitivity differences
between peak and isoform tools can be explained by the constraints of
the prediction methods. In particular, the low number of isoforms
quantified by scDaPars® could be explained because this tool only
predicts PAS in annotated 3’ UTRs. As expected, sequencing depth
impacts the quantification of genes and isoforms. Most methods
detect fewer genes and isoforms in the datasets with medium and low
UMI per isoform (Fig. 2g, h).

We next identified DIU genes across the two cell populations
simulated. In all three simulated datasets, SCALPEL recovered the
highest number of DIU genes closely followed by scUTRquant* and
scUTRquant (Fig. 2i, Supplementary Data 3). Both methods have a
superior performance than peak-based tools although SCALPEL has
higher sensitivity than scUTRquant (Figs. 2j and S3a-c). The higher
sensitivity of SCALPEL is partly explained by a robust performance
across expression ranges while all other tools misidentify lowly
expressed (bottom 50% expression) DIU genes (Fig. S3d-f). In the low
expression dataset, SCALPEL correctly identifies 57% of DIU genes
among Q1 genes, while scUTRquant and scUTRquant* identified 19%

and 22%, respectively (Supplementary Data 3). We also noticed that true
DIU genes predicted by SCALPEL have a high degree of agreement and
are co-detected by at least one of the other benchmarked tools (high:
95%, mid: 93%, low: 91%) (Fig. S3g-i), indicating that tool agreement can
be used as a metric to assess its performances on real datasets.

Finally, we decided to compare the performance of SCALPEL in
terms of execution requirements and runtime. SCALPEL runtime and
memory usage are comparable or better than most of the tools ana-
lyzed, and only scUTRquant is faster and more memory efficient than
SCALPEL. Yet, this can be directly linked to the presence of an already
processed annotation as both memory and execution time increase
when no 3’ UTRome is provided to scUTRquant (scUTRquant*, Fig.
S3j-1, Supplementary Data 4).

SCALPEL predictions on real data are more sensitive and have a
high degree of agreement with other tools

We additionally benchmarked SCALPEL performance against the other
tools using a publicly available single-cell dataset of mouse sperm cell
differentiation generated using 10x Genomics platform?® (Fig. S4a). In
this dataset, SCALPEL identified 51,767 isoforms in 17,525 genes that
were used for downstream analyses such as dimensionality reduction
and clustering. We found three main cell populations using markers
from a previous study’: spermatocytes (SC), round spermatids (RS)
and elongated spermatids (ES) (Fig. S4b). Pairwise comparison
between these populations shows again that the number of predicted
DIU genes is generally higher for isoform-based approaches than for
peak based methods (Fig. S4c-e, Supplementary Data 5). The higher
number of identified DIU genes by SCALPEL is partly explained by a
higher prediction among less expressed genes (bottom 50% expres-
sion). Here, it is important to note that the number of DIU genes
detected by scUTRquant using the standard gene annotation
(scUTRquant*) is clearly reduced, indicating that the higher sensitivity
of scUTRquant can be directly attributed to the use of an extended
annotation (3’ UTRome) and not to the algorithm per se.

Finally, we investigated the agreement in the prediction of genes
with differential peak or isoform usage across tools. We observed a
substantial overlap in the predictions of SCALPEL with other tools, with
more than 70% of SCALPEL predictions supported by one or more tools
(Fig. S4f-h). SCALPEL and scUTRquant showed the highest agreement
on the identified DIU genes across the cell types (Fig. S4i-n).

We additionally benchmarked the performance of SCALPEL on a
shallower single-cell dataset generated in-house with a Drop-seq plat-
form containing human induced pluripotent stem cells (iPSCs) and
neural progenitor cells (NPCs) (Fig. 3a, b). In this dataset, SCALPEL
quantified 68,813 isoforms in 16,544 genes and more than 10,000
genes with two or more isoforms (Supplementary Data 6-8). When
performing the benchmark on the neuronal dataset, SCALPEL and
scAPAtrap showed higher sensitivity in the identification of DIU genes
while keeping a high degree of agreement with other tools (Fig. S5). In
this case, although scUTRquant quantified a high number of isoforms
(40,002) and genes with multiple isoforms (10,481), only 246 DIU
genes were identified between NPCs and iPSCs (Fig. S5d, e). This drop
in the number of detected DIU genes is likely arising from stringent
default parameters which discard genes expressed in a few cells
(minCellsPerGene = 50).

Overall, the results from the benchmark show that SCALPEL has
higher sensitivity than all other tools while keeping good precision and
performance in real datasets generated with 10x and Drop-seq
technologies.

SCALPEL predictions can be experimentally validated

Considering that iPSCs and NPCs are easily distinguished experimen-
tally, we decided to use this dataset to experimentally validate SCAL-
PEL predictions. To this end, we selected five genes predicted to have
changes in isoform usage by SCALPEL using Chi-square statistical test
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(false discovery rate, FDR, adjusted p-value < 0.05, see the “Methods”
section) across cell types (Supplementary Data 9) and validated the
expression of the isoforms quantified by SCALPEL in NPCs and iPSCs
using 3’ RACE. With this analysis, we confirmed the 3’ UTR lengthening
of two DIU genes predicted by SCALPEL, EIFI and JPTI. In both exam-
ples, SCALPEL quantified two isoforms differing in the length of the
last exon and predicted a shift in the expression of the short and the
long isoform between iPSCs and NPCs (Fig. 3c, d) that was also

validated with the 3’ RACE (Fig. 3e, f). For the other 3 genes tested, we
were able to detect all isoforms predicted by SCALPEL in two of the
remaining genes (Figs. S6 and S11-13).

Isoform expression at the single-cell level reflects miRNA
function

Since it is known that APA changes significantly during neurogenesis®,
and that miRNA regulation is very important in this process®?°, we
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Fig. 2 | Benchmark of SCALPEL using synthetic data. a UMAP plots depicting the
two cell populations, population A (orange) and population B (green), simulated
with Splatter. b Graphical representation of the types of genes included in the
simulated data. c Violin plots showing the relative number of UMIs per isoform in a
reference 10x dataset (gray) and those in the simulated datasets with different
dropout rates (high, mid and low depicted in dark, medium and light purple). The
real dataset contains information for 40,750 isoforms across 2042 cells. 12,320
isoforms in 6000 cells were simulated for the high, mid and low datasets. Differ-
ences in the distribution of UMIs per isoform were tested using
Mann-Whitney-Wilcoxon two-sided test. The center of the box plot is denoted by
the median, a horizontal line dividing the box into two equal halves. The bounds of
the box are defined by the lower quartile (25th percentile) and the upper quartile
(75th percentile). The whiskers extend from the box and represent the data points

that fall within 1.5 times the interquartile range (IQR) from the lower and upper
quartiles. Any data point outside this range is considered an outlier and plotted
individually. p-Values for pairwise comparisons (Bonferroni-adjusted) are: High vs.
real p-value = 0.86; high vs. mid p-value = 4.40e-259; high vs. low p-value =2.22e
-308; mid vs. low p-value = 2.6e-174. Correlation between simulated isoform
abundances (y-axis) and predicted isoform abundances (x-axis) for the high (d),
medium (e) and low (f) sequencing depth simulated datasets. g-i Number of cor-
rectly identified genes (g), isoforms (h), and DIU genes (i) by each of the sequencing
tools in the high (dark purple), medium (medium purple) and low (light purple)
simulated datasets. As reference, we provide the number of simulated genes, iso-
forms and DIU genes simulated (gray bar). j Summary of the performance of the
different tools benchmarked on the three synthetic datasets. Source data are
provided as a Source Data file.

investigated if changes in isoform usage in NPCs compared to iPSCs
were driven by miRNA function. To address this question, we down-
loaded the predicted miRNA target sites on the human genome from
the MBS database® and identified all isoforms targeted by miRNAs
previously associated to NPCs* (Supplementary Data 10). Given that
isoforms with different 3’ ends could contain different regulatory
elements such as miRNA target sites’, and that miRNAs usually
downregulate their target RNAs*’, we compared the fold change dis-
tribution of isoforms containing target sites of miRNAs expressed in
NPCs with those of non-targeted isoforms from the same genes. This
analysis identified significant downregulation of isoforms targeted by
let-7b-5p, miR-9-5p, miR-124-3p, miR-128-5p, miR-128-3p, miR-153-5p,
miR-199a-3p, and miR-34a-5p in NPCs compared to iPSCs (FDR < 0.05;
Fig. 3g and Supplementary Data 11). This result suggests that miRNAs
can explain some of the isoform expression changes predicted by
SCALPEL during the differentiation of iPSCs to NPCs.

SCALPEL isoform quantification recapitulates 3’ UTR shortening
during mouse sperm cell differentiation

We decided to use SCALPEL isoform quantification to investigate the
benefits of using isoform-based analyses instead of gene-based ana-
lyses for clustering and downstream analyses. Using the mouse sper-
matogenesis dataset, we observed that the use of isoforms instead of
genes for clustering analysis results in the identification of the same
three main cell populations (Fig. 4a; 94% agreement in cell assign-
ment). In this dataset, most of the genes express a single transcript in
individual cells. Yet, we detect on average 917 genes with two or more
isoforms per cell, which may be potentially regulated across cell types
(Fig. S7a). Given that isoform quantification may be useful to identify
new cell populations, we investigated how informative is isoform
expression to define cell type identity. For this purpose, we computed
for each gene its information content defined as the sum of the
information from all its expressed isoforms®. The higher the infor-
mation content of a gene, the more cell-type-specific the expression of
its isoforms is. Using this approach, we noted that most genes had
clear cell type-specific expression bias (Fig. 4b). Manual inspection
showed that in many cases all isoforms from the same gene showed
similar expression changes across cell types, indicating that gene
information content mainly reflects transcriptional changes (Fig. 4c).
Thus, we used a Chi-square test to identify genes in which isoform
usage changes across conditions, reflecting a regulation at the post-
transcriptional level. Using this approach, we identified 4196 genes
displaying changes in isoform usage across cell types using Chi-square
test (FDR adjusted p-value <0.05, see methods) (Fig. 4b, red dots;
Supplementary Data 12). Pairwise DIU analysis showed that most of
these genes present changes in isoform usage independent of changes
in gene expression, indicating that those events are only regulated at
the post-transcriptional level (Fig. 4d). In most cases, changes in APA
across cell types involved changes in tandem APA sites, which only
affect the length of the 3’ UTR, or complex events including isoforms
with changes in the 3’ UTR length and the exon composition (Fig. 4e).

These results indicate that the main effect of APA during spermato-
genesis is the regulation of the 3’ UTR length. One of these genes is
Smg7, a gene that plays a crucial role in male germ cell differentiation
in mice through its role in nonsense-mediated mRNA decay”. We
observed a switch in isoform usage during cell differentiation where
the long isoform of Smg7 gene (Smg7-202) is progressively replaced by
a shorter isoform (Smg7-203) (Fig. 4f). Previous studies have shown
that APA results in global 3* UTR shortening during sperm cell
differentiation®**, Thus, we used SCALPEL predictions to assess if the
observed changes in 3' UTR length reflected a coordinated shortening
during sperm cell differentiation. To this end, we used the isoform
quantification data to order cells by pseudotime and calculated the
average 3’ UTR length per cell. In agreement with previous studies, we
observed that overall, 3’ UTR length shortens while cells differentiate
(Fig. 4g), indicating that SCALPEL predictions recapitulate known
changes in 3" UTR length during mouse spermatogenesis.

Finally, we investigated if the changes in isoform usage across cell
types involved changes in the types of transcripts (i.e. the biotype)
expressed in the cells that could further alter cell function by pro-
moting, for instance, the degradation of expressed mRNAs or the
production of non-coding isoforms of a gene. We observed that in
~80% of the cases, changes in APA did not involve a change in the type
of transcripts expressed (Fig. S7b). In the cases where the biotype of
the most expressed isoform changed across cell types, in 82% of the
cases this change involved a switch from a mRNA to a non-coding or
NMD isoform or vice versa (ES-RS: 429, RS-SC: 406, ES-SC: 690; Fig.
S7c¢). In these cases, APA could alter significantly protein levels and
lead to stronger functional changes. Together, these results confirm
that SCALPEL robustly captures APA-mediated remodeling of tran-
scriptomes and reveals novel insights into transcript diversity regula-
tion during cell differentiation.

Isoform-based analysis identifies novel cell populations during
mouse spermatogenesis

To investigate if isoforms provide additional biological insights in
single-cell analyses, we decided to perform a high-resolution cluster-
ing analysis of the spermatogenesis dataset. As expected, at higher
resolutions both gene and isoform-based analyses identify more cell
populations while keeping a high degree of similarity across clustering
solutions (Figs. 4h, S8a, Supplementary Data 13, 14). At this higher
resolution, we identified a new cell population of RS cells, RS6, in the
isoform-based analysis that could not be distinguished using gene-
based clustering. This population is composed of cells from other RS
cell clusters and is not the result of subclustering existing RS cell
populations (Figs. 4h and S8a, b). Compared to other RS populations,
the RS6 shows few changes in gene expression (Fig. S8c). Yet, the RS6
cluster presents a clear set of isoform markers (Wilcoxon rank-sum
test, FDR adjusted p-value <0.05, see the “Methods” section) that
cannot be identified in the gene-based analysis (Fig. S8d, Supplemen-
tary Data 14). GO term enrichment analysis using RS6 isoform markers
identified biological processes associated with cilium organization and
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organelle assembly (Fig. 4i, Supplementary Data 15, Fisher exact test,
FDR adjusted p-value <0.05), which are essential processes for the
differentiation and maturation of RS cells***’. DIU analysis across RS
populations identified 543 genes with differential isoform usage in RS6
cells (Supplementary Data 16, Chi-square test, FDR adjusted p-value <
0.05, see the “Methods” section). These isoforms are not the result of
changes in gene expression as only 3 DIU genes are differentially

-2 0 2
Log2FC (NPCs / iPSCs)

expressed. Among them, we identified Dnah3, a structural component
of the axoneme essential for the flagellum assembly and the acquisi-
tion of sperm motility, and Msi2, an RNA binding protein that plays a
central role in coordinating post-transcriptional programs essential for
late spermatocytes to early spermatid differentiation®**°. These genes
exhibited higher expression of longer transcript isoforms in RS6
compared to neighboring RS cells, suggesting that these changes are
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Fig. 3 | SCALPEL predictions on iPSC and NPC data can be experimentally
validated and reflect miRNA function. a Clustering analysis identifies two main
populations corresponding to iPSCs (salmon) and NPCs (cyan). b Distribution of
the number of UMIs, Genes and % of mitochondrial UMIs (MT) of the two samples
analyzed. iPSC violin plots show measurements for 1233 cells and the NPC violin
plots show measurements for 1302 cells. Overlaid boxplots indicate the median
(center line), the 25th and 75th percentiles (box limits), and the most extreme
values within 1.5 times the IQR (whiskers). iPSCs: median =7047, box = [4166,
11,495], whiskers =[597, 19,973]; NPCs: median =2952, box =[1513, 5771], whis-
kers =[414, 19,975]. ¢ SCALPEL identifies a significant change in isoform usage in
EIFI gene between iPSCs and NPCs. Coverage plots show the distribution of filtered
reads along isoforms in both conditions. Relative expression of isoform abundance
by SCALPEL is provided on the custom tracks. The location of the oligo dT primer

(gray) and the gene-specific primer (purple) used for experimental validations are
shown on top of the isoform diagrams. d Experimental validation in bulk of the
isoform changes predicted by SCALPEL using 3’ RACE. EIF1-204 isoform is more
highly expressed in iPSCs than in NPCs while the expression of the £/F1-201 isoform
is similar in both conditions. e Quantification of JPT1 isoforms by SCALPEL. f Rela-
tive abundance of JPTI-203 in NPCs is higher than in iPSCs while JPT1-207 is more
similar across conditions. g Cumulative distribution plot of log2FCs showing the
difference in the expression of isoforms from DIU genes where one of them con-
tains miR-128-5p target sites (pink) and the other does not (gray), indicating that
changes in isoform usage between iPSCs and NPCs can be attributed to miRNAs
known to be implicated in neurogenesis (two-tailed Kolmogorov-Smirnov test,
FDR = 0.0000115). Source data are provided as a Source Data file.

affecting the resulting proteins and their function within the different
cell types (Fig. S8e, f). Together, these results suggest that the RS6 cell
population corresponds to elongating spermatids*, an intermediate
population state between RS and ES populations previously described
morphologically in the literature that had not been identified using
single-cell gene expression profiles.

SCALPEL improves isoform quantification of novel isoforms
predicted using single-cell long-read sequencing

We investigated if SCALPEL could be used to improve the quantifi-
cation of isoforms predicted in individual cells using long-read sin-
gle-cell sequencing data. We reanalyzed two single-cell datasets from
the P28 mouse hippocampus and visual cortex containing 10x 3’seq
scRNA-seq data and paired PacBio data** (Fig. S9a, Supplementary
Data 17). We performed standard single-cell analysis using gene
expression data and subset the data of the main five cell populations:
excitatory neurons, astrocytes, NPCs, oligodendrocytes, and micro-
glia (Supplementary Data 18, 19). As expected, a comparison of cell
assignments using gene or isoform-based quantification revealed a
high degree of agreement between the two approaches (Fig. 5a).
Given that SCALPEL can only distinguish isoforms with changes at
the 3’ end, we collapsed isoforms and kept only those with changes in
the last 600 nt. Then, we compared the abundance per cluster of
these isoforms according to isoquant and SCALPEL. The quantifica-
tion by SCALPEL clearly correlates with that of isoquant although the
expression range of SCALPEL is broader as the quantification is done
using the single-cell short-read data and not the long-read data
(Fig. S9b).

We also ran SCALPEL to identify genes with changes in isoform
usage across cell types. In this dataset, we found that most changes in
isoform usage happen between glial cells (microglia, astrocytes, and
oligodendrocytes) and the excitatory neurons (Supplementary
Data 20). Among these genes, we identified examples in which iso-
form switch events predicted by SCALPEL were supported by the
long-read data. One of those examples is the gene Cdc42. SCALPEL
detects a change in isoform usage between excitatory neurons and
microglia/astrocytes, which is validated with the PacBio data
(Fig. 5¢). Dclki is another example in which SCALPEL predicts a
change in isoform usage between astrocytes/microglia and excita-
tory neurons. In this case, microglia and astrocytes express only a
short version of the gene while excitatory neurons express a much
longer isoform (Fig. 5d). Here, it is interesting to highlight that iso-
quant quantifications disregard changes in the 3’ ends and focus on
changes in exon junctions. While SCALPEL quantifies two isoforms
with tandem polyA sites (Dclk1-202 and Dclk1-208), isoquant focuses
on the changes in exon composition. Together, these analyses
demonstrate that SCALPEL can be used to quantify isoform diversity
derived from paired long and short-read data with single-cell reso-
lution and that provides additional information to the long-read
data that disregards changes in the 3’ ends that do not affect exon
composition.

Discussion

In this manuscript, we have presented SCALPEL, a new tool for sensi-
tive isoform quantification and visualization using conventional 3’
based scRNA-seq data. Comparison of SCALPEL to other existing tools
using synthetic data shows that SCALPEL correctly identifies a higher
fraction of simulated genes and isoforms and has a higher accuracy in
the detection of DIU genes than other tools (Fig. 2g-j). Benchmarking
of SCALPEL on real data shows that SCALPEL predictions have a high
agreement with that of the other tools, which have commonly been
used as a measure of accuracy. Additionally, we also show that in
contrast to other tools, SCALPEL’s performance is similar in the 10x
dataset than in the Drop-seq dataset (Figs. S4 and S5). This is
remarkable considering that many other tools perform poorly on the
Drop-seq datasets, limiting their usability to high-expression datasets.

We show that SCALPEL predictions can be validated experimentally
using 3’ RACE (Figs. 3c-f and S6) and long read sequencing (Fig. 5c, d).
While 3’ RACE is not quantitative and can only be used to validate
specific isoforms in bulk, we consider that the validation of some of
SCALPEL’s predictions using this method confirms the reliability of the
predictions. Similarly, while PacBio only provides reliable cell-type
specific measurements, the significant correlation between isoquant
and SCALPEL using pseudobulk data supports SCALPEL predictions.

We also demonstrate that the iDGE provided by SCALPEL can be
used to perform standard single-cell analysis such as dimensionality
reduction, clustering, and pseudotime analysis (Fig. 2a). At low reso-
lution, SCALPEL iDGE provides very similar clustering solutions to
gene-based analyses (Figs. 4a and 5a). However, at higher resolutions
we also show that isoform quantification can be used to gain new
insights about cell populations and identify, for instance, novel cell
states that cannot distinguished using standard single-cell gene
quantification data (Figs. 4h and S8), indicating that we can capture
post-transcriptional regulatory events by quantifying isoforms in
individual cells.

In agreement with this idea, we noticed that SCALPEL predictions
recapitulate known changes in 3’ UTR length during sperm cell dif-
ferentiation, mainly led by changes in the use of tandem APA sites
(Fig. 4). In the human iPSC & NPC data, changes in isoform quantifi-
cation reflect miRNA function at the single-cell level, as changes in
isoform usage across cell types can be directly linked to the presence
of cell type-specific miRNAs (Fig. 3g).

Finally, we also show that SCALPEL can be used to improve iso-
form quantification obtained from paired long and short-read scRNA-
seq datasets (Fig. 5). In these cases, SCALPEL can be exploited to
quantify the relative abundance of isoforms predicted using long-read
data at the individual cell level, which cannot be done with standard
scRNA-seq analysis pipelines. Additionally, it provides the quantifica-
tion of shortening/lengthening events in the last exon, i.e. tandem APA
sites, which are usually not considered using long-read data that
focuses on events that change exon composition.

Together, our work highlights how SCALPEL expands the current
scRNA-seq toolset to explore post-transcriptional gene regulation in
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individual cells from different species, tissues, and technologies to annotated isoforms in the existing annotation and restricted the
advance our knowledge on gene regulation from the bulk to the single-  quantification to isoforms that are different at the 3' end. Using

cell level.

Methods
Annotation preprocessing

GENCODE* annotation as a reference, we truncated all isoforms to
include the last 600 nucleotides of spliced sequence from their 3’ end,
which is the region that displays coverage by the 3’ tag-based scRNA-
seq data (Fig. S10). Then, we collapsed truncated isoforms with exact

3’ based scRNA-seq protocols use oligo(dT)s to capture poly- intron/exon boundaries and fewer than 30 nucleotide differences in
adenylated RNAs, which introduces a bias in the location of reads their 3’ end coordinates. When multiple isoforms were collapsed, we
towards the 3’ end of the RNAs (Fig. S10). Thus, we truncated the kept the name of the isoform having the higher expression according
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Fig. 4 | Isoform quantification recapitulates 3’ UTR shortening during mouse
spermatogenesis and identifies novel cell types. a Cell types identified using
gene expression (left) and isoform expression estimated by SCALPEL (right). Both
analyses identify spermatocytes (SC), round spermatids (RS), and elongated sper-
matids (ES). Agreement in clustering solutions is shown by a Sankey plot. b Scatter
plot showing the cell-type expression specificity relative to gene expression for all
genes with only two expressed isoforms. The higher the information content of a
gene, the more cell-type-specific its expression is. Colored dots represent genes
whose isoform expression usage changes across conditions (Chi-squared test
adjusted p-value < 0.05). ¢ SCALPEL quantification of isoform usage from Ighmbp2.
Coverage plots show the distribution of filtered reads in SC, RS and ES clusters.
SCALPEL quantifications of the different isoforms are shown on top of the custom
tracks. d Number of DIU genes identified in each pair of samples that are also
differentially expressed (light gray) or not (dark gray). Most genes show changes in
isoform usage independently of changes in expression. e Classification of DIU
genes depending on the type of APA event identified as alternative last exons (ALE),

tandem APA sites (tandem APA), and others. f Quantification of Smg7 isoforms by
SCALPEL. Coverage plots show a gradual switch in isoform usage during the dif-
ferentiation from SC to ES cells. g Pseudotemporal ordering of cells confirms the
overall shortening of 3’ UTRs during mouse sperm cell differentiation. h High-
resolution clustering using isoform expression data (right) identifies novel cell
states (RS6) that cannot be identified using gene expression data (left). Using this
resolution, we identified 15 cell populations in the isoform-based analysis including
spermatocytes (SC1-5), Round cells (RS1-6), Elongated Spermatids (ES1-2), and
Condensing Spermatids (CS1-2). The new RS6 population identified in the isoform-
based analysis is composed of cells coming from several RS populations identified
using gene expression data. i GO term enrichment analysis using RS6 marker iso-
forms identified significant terms associated with cilium organization and cell dif-
ferentiation. In the circular barplot, GO terms are arranged according to their
combined enrich R score and colored according to their adjusted p-value. Source
data are provided as a Source Data file.

to pseudobulk quantification. For this purpose, we used salmon quant
v10.1** with default parameters to quantify all isoforms in bulk using as
input the scRNA-seq bam files provided. For the analysis of multiple
samples, isoform expression was averaged across all samples.

Read preprocessing

We processed all the input BAM files containing aligned and tagged
scRNA-seq reads to discard artifacts and reads not supporting
annotated transcripts. First, we used samtools v1.19.2* to split the
input BAM files by chromosome using the command samtools view
and converted them into BED files using bam2bed command from
BEDOPS v2.4.41*. We included all reads in the bed file (option -all-
reads) and split them into separate entries (option -split) if con-
tained Ns in the CIGAR line (i.e. spliced reads). We used the function
findOverlaps from GenomicRanges R package v1.50.0* to overlap the
reads with the set of selected isoforms using default parameters.
Given that all reads with the same BC and unique molecular identifier
UMI are likely generated from the same original RNA molecule, we
grouped them into a unique fragment and jointly evaluated them
during isoform quantification (Fig. S1). We defined the genomic
coordinates of each fragment as the most 5" and 3’ coordinates of its
associated reads. We discarded all the fragments overlapping intro-
nic and intergenic regions except those extending the 3’ end of the
gene, and spliced reads not supporting annotated exon-exon junc-
tions, as they were considered to come from pre-mRNAs or unan-
notated transcripts. To avoid biases in the quantification of the
isoforms due to reads mapping to internal priming (IP) locations in
the genome, we discarded all the fragments that could arise from
these sites. For that purpose, we scanned the whole genome using a
custom Perl script and identified putative IP locations as regions
containing six consecutive adenosines or seven or more adenosines
in a window of 10 nucleotides. We discarded all the fragments loca-
ted upstream from an IP site. In this case, we only considered IP sites
located more than 60 nucleotides upstream of an annotated 3’ end in
the transcriptomic space.

Quantification of isoforms at the single-cell level

First, we used all genes with only one detected isoform to assess the
empiric distance distribution of scRNA-seq reads with respect to
annotated isoform 3’ ends. Considering defined intervals of 30 nt, we
calculated the distribution of read 3’ ends relative to annotated 3’ ends
by dividing the number of distinct 3’ ends in each bin in the tran-
scriptomic space by the total number of 3’ ends. Using this probability
distribution, we assigned to each read a probability to come from a
specific isoform based on its relative distance to the 3’ end. Con-
sidering that each fragment is composed of one or more reads, we
defined the probability of a fragment f to belong to an isoform k for a

gene g as

Pf(k |g):wk,g ) H Pk 1g) @

reRy

where R; is the set of reads associated with the fragment f, P,.(k|g) is
the probability that read r is associated with the isoform k, and w; , is
the weight associated with the isoform k and gene g based on the
pseudobulk quantification.

We computed the weight w, , of an isoform k and gene g as

- TPM; . )
ke erKg TPMx,g ( )

where K, is the set of isoforms for the gene g and TPM, , is the
transcript per million counts of isoform k and gene g according to
Salmon*.

Hence, the probability of a set of fragments F, . for gene g and
cell ¢ given a fixed set of isoforms K, and associated relative abun-
dances values (0) is given by

P(Fglc | Kg) = H Z Pf(x)ef’C 3)

feFg c xeKy

where F, . is a set of fragments for a gene g and cell ¢, P¢(x) represents
the probability of a fragment f belongs to isoform x, and 65 the
isoform x relative expression for a gene g and cell c.

Consequently, we estimated the isoform relative expression
values () by maximizing the log-likelihood function using a
standard expectation maximization (EM) algorithm. The maximum-
likelihood estimators @ for the isoform relative abundance values are
given by:

6% = argmax > log| Y P85 e 4)

65¢ feFg,.c xeKy

For each gene g and cell ¢, the EM algorithm proceeds as follows:
Initialization of value Of'c for each isoform k of the gene g as l,%g‘
2. lIterate until convergence:
a. E-step: Calculation of posterior probability for each fragment
f € Fg . to belong to the isoform k given that it comes from a
gene g and a cell ¢ as

=

Prk | gnec)dg©
ZKEKE Pf(% lgn C)Of‘c

Prkigno= 5)
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Fig. 5 | SCALPEL provides isoform quantification on individual cells using
paired short and long scRNA-seq datasets. a UMAP plots depicting the main five
cell populations selected from Jogleklar et al. identified using gene and isoform-
based quantifications including excitatory neurons (EN), neural progenitor cells
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(NPCs), oligodendrocytes (Olig), astrocytes (Astro) and microglia (MIG).

b Comparison of isoform expression quantification for each cell type using

isoquant (PacBio data) and SCALPEL. ¢, d SCALPEL identifies changes in isoform
usage in Cdc42 (c) and Dclkl (d) between astrocytes/microglia and excitatory
neurons. Custom tracks on top show the mapping of filtered short reads and
SCALPEL quantification for each cell type. On the bottom, sashimi plots show the

relative usage of different isoforms in individual cell types and the aligned long-

read data supporting them. Source data are provided as a Source Data file.
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b. M-step: Estimate the isoform relative expressions 65 ¢

Yfer, Prik1gne)

05 = ;

(6)

g,

The convergence state of the EM algorithm was settled by a stop
criterion condition. This condition was reached when the maximum
difference of the estimated relative abundance between two iterations
was equal to or lower than 0.001. All the isoforms with a null weight
value were discarded from the annotation set. To generate isoform
expression values for the iDGE per gene the estimated isoform prob-
abilities were multiplied by the UMI counts assigned to the original
DGE (Fig. S1).

Isoform entropy and gene information content calculation

In order to deconvolute the DGE into an iDGE, SCALPEL estimates the
isoform relative expression distributions for each gene and cell (6, see
above). Considering a fragment f across the set of all the fragments F,
we can define the conditional probability of fragment f to originate
from an isoform k given it comes from a gene g and cell c as:

2 Prkigno

_ = _p&c 7
Prk | gno): i 0% (7)

where 6% € is the isoform k relative expression estimated by SCALPEL
for gene g in cell c. Taking this into account, the probability of frag-
ment f to originate from isoform k of gene g given that it originates
from cell ¢ can be derived as

Py(k | ©)=Ps(k |gNOPg | ©) ®)

where the probability of fragment f to originate from any isoform of
gene g given it originates from cell ¢ can be calculated from the iDGE as

DGEg,C _ erKg iDGE;{,C

= . ©)
8eG DGEg.c ZREK IDGE% c

Prg 1 ¢)= 5

where DGE, . denotes the number of UMIs assigned to gene g in cell ¢,
G the set of all the genes, iDGE, . the number of UMIs assigned to
isoform x in cell ¢, K the set of all the isoforms across all the genes.
Applying Bayes’ theorem, the probability of fragment f to origi-
nate from cell ¢ given it originates from isoform k can be derived as

Pr(k | ©)P¢(c)

10)

where the probabilities P¢(c) of fragment £ to originate from cell ¢ and
P(k) of fragment f to originate from isoform k can be estimated from
the iDGE corresponding column and row sum fractions, respectively.

deG DGEg,c ZkeK iDC'Ek,c

Pz(c) := = - 11
f( ) ZceC deG DGEg,c ZceC ZkeK IDGEk,c )
where C is the set of all the cells, and
iDGE
)f(k) .= ZCECI k,c (12)

ZkeK ZceC iDGI-:k, c

Given the cell-to-cell cluster mapping ¢:Ci—L, where L is the set of
all cell clusters, the probability of fragment f to originate from a cell in
cluster [, given it originates from isoform k can be derived by summing

up the corresponding cell probabilities:

Pl 1K) = Pyl k)

1
ceC ( 3)
where C, is the set of the cells associated to the cluster /.
Based on those conditional probabilities, each isoform’s entropy
across cell cluster is defined as:

H(k) := =" Pl | b log, (Pf(l \ k)) (14)

lel

If all fragments originating from a given isoform originate from
cells of the same cell type, the corresponding entropy is minimal, at a
value of

Hiin =0 15)
bits. If an isoform k is expressed perfectly equal across all clusters,
the maximum isoform entropy
Hmax = IOngL‘ (16)
is reached, where |L| denotes the number of cells clusters.

The isoform-level entropies were summarized to the gene level to
quantify the randomness of a gene’s isoform distribution across cell
types:

H(g): = Y H0

xeKy (17)
While the minimal gene entropy
Hmin =0 (18)

is gene-independent, its upper bound depends on the number of
expressed isoforms |K,| and thus differs across genes:

Flinay(8) = |Kg |Himax

The difference from that maximum entropy defines a gene’s
information content across isoforms and cell types/clusters

19)

1(8) := Hmax(8) — HI(g) (20)

Detection of differential isoform usage between cell clusters
For the identification of differential isoform expression between
clusters of cells, we implemented the function Findlsoforms. This
function aggregates the isoform counts using AggregateExpression
from Seurat and retains only genes with two or more isoforms. All
isoforms that represent < 10% of the total gene expression in at least
one of the conditions were discarded. Additionally, to reduce the
number of false positives, we also discarded genes whose isoforms
changed across conditions but had a very low expression variance
(< 5% standard deviation), which would otherwise be likely identified as
significant DIU genes. For the remaining genes, the function performs
a Chi-squared test to assess if the read distribution across isoforms is
the same between clusters. We selected significant DIU genes with an
FDR < 0.05.

Average 3’ UTR length calculation

We extracted from the iDGE all protein-coding isoforms and computed
the lengths of the corresponding 3’ UTR regions from the reference
annotation. For each gene g, we calculated the gene average 3’ UTR
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length 7, in a cell ¢ as

_ 2kek;, TkiDGEg

T
)Kg\

gc @n

where 7, is the 3’ UTR length of isoform k, iDGE,, . are the UMI counts
of isoform k.

Next, we calculated the average weighted 3’ UTR isoform length
within each cell 7. for all the expressed isoforms as

- de’G Tg,c

€ @)

Tc

where G is the set of all genes with protein-coding isoforms expressed.

Generation of read coverage plots

SCALPEL outputs a BAM file including the reads used for isoform
quantification. Within the SCALPEL framework, we have implemented
the function CoveragePlot in R to visualize the read coverage on the
isoforms using a transcriptome annotation in GTF format and BAM
files. We generated the visualization tracks using the R Gviz library
v1.46.0*,

Generation of synthetic data for benchmark analysis

We used Splatter”? to simulate 12,320 isoforms across 6000 cells
representing two equally probable cell populations (group.prob = 0.5)
using the function splatSimulatedGroups. For these cells, we generated
3 datasets with distinct sequencing depth: low (lib.loc: 29,000 counts,
lib.scale: 0.5), medium (lib.loc: 39,000 counts, lib.scale: 0.5), high
(lib.loc: 120,000 counts, lib.scale: 0.5). Dropout effects were modeled
using the experimental dropout function with the parameters shape
and midpoint adjusted to reflect 10x genomic profiles in the 10x
scRNA-seq mouse dataset (shape: 0.5; midpoint: 0.4). For each simu-
lation, genes were stratified into five regulatory categories based on
their number of isoforms and their expression dynamics: unique iso-
form with no change, unique isoform with expression change, multi-
isoform with no change, multi-isoform with coordinated expression
change, and multi-isoform with isoform-specific regulation (DIU)
(Supplementary Data 1 and Fig. 2b). Furthermore, genes were sampled
across five expression quantiles to ensure even coverage across
expression levels.

To complement the synthetic iDGE matrices, we generated syn-
thetic FASTQ files that reflect realistic read structure and position
distribution observed in the mouse 10x scRNA-seq data. Considering
the mapped data, we extracted the genes, isoforms, and fragments, as
well as the distance to the transcript’s 3’ end for all reads assigned to at
least one transcript. Next, we used a custom bash script to sort these
data and extract the following three (empirical) distributions: (i) the
number of reads per fragment; (ii) their distance to the fragment’s 3’
end; and (iii) the distance to the transcript’s 3’ end for all fragments
that were unambiguously mapped to a gene expressing a single iso-
form. From these distributions and the counts from the corresponding
synthetic iDGE, fragments and reads were sampled using a custom R
script. Then, a second custom awk script was used to extract the cor-
responding synthetic read sequenced from a FASTA file providing the
transcripts’ spliced sequences. This single FASTA file was finally con-
verted to a pair of FASTQ files adding ‘@’ quality scores and trans-
forming the placeholder cell and fragment indices to valid 10x
barcodes using a custom Python script. All custom scripts used to
generate the synthetic FASTQ files are implemented within the scr*eam
pipeline (see the “Code availability” section).

Analysis of mouse spermatogenesis 10x scRNA-seq data

We downloaded the 10x scRNA-seq samples from male mouse
germline” from the GEO database (accession number GSE104556)
and processed them using Cell Ranger v7.1.0*, using mm10 mouse
genome assembly*® and GENCODE M21* as reference annotation. We
merged the processed data and analyzed them jointly using Seurat
v5.0.0%". We restricted the analysis to the cells with a UMI count
superior to 500, inferior to 80,000 and < 5% of mitochondrial genes.
The final Seurat object contained 2174 cells and 22,158 genes. We
performed dimensionality reduction on the DGE using 2000 genes as
variable features and used the first 9 principal components (PCs) to
build the kNN graph and compute a UMAP. We used the function
FindClusters with a resolution of 0.02 to identify 3 clusters. We
compared our clustering results with the cell clustering from pre-
vious analysis on the same dataset by Schulman et al.”® and annotated
the defined cell clusters in our analysis as ES, RS, and SC according to
their previous corresponding annotation. Next, we filtered the input
BAM file to retain the 2,174 filtered cells using samtools view -D CB
from samtools v1.19.2* and extracted the DGE matrix for SCALPEL
analysis. Following the execution of SCALPEL, we generated a Seurat
object containing the same 2,042 cells, 23,151 genes, and 76,419
isoforms. For downstream analyses, we discarded all isoforms
expressed in less than four cells and cells with less than three iso-
forms expressed using CreateSeuratObject function (option min.-
cells =4, min.features =3). The final Seurat object included 51,767
isoforms of 17,525 genes. We performed dimensionality reduction on
the iDGE using 2000 isoforms as variable features, and we used 9 PCs
for the generation of the kNN graph for the UMAP. We used a reso-
lution of 0.02 to perform the clustering and identified three cell
populations. We used the approach described above to annotate the
cell clusters. We compared the iDGE clusters with the DGE clusters
using a Jaccard index.

Differentiation and characterization of iPSCs and NPCs using
Drop-seq technology

We differentiated human iPSCs (Ic-Ctrl3-F-iPSC-4F-1 from Spanish
Stem Cell Bank) towards NPCs using a protocol previously established
in the lab®**. Briefly, we differentiated iPSCs to neuroepithelial cells
over a period of 10 days by dual SMAD inhibition using neural main-
tenance medium, 1:1 ratio of DMEM/F-12 GlutaMAX (Gibco, #10565018)
and neurobasal (Gibco, #21103049) medium complemented with 0.5x
N-2 (Gibco, #17502048), 0.5x B-27 (Gibco, #17504044), 2.5 ug/ml
insulin (Sigma, #19278), 100 mM L-glutamine (Gibco, #35050061),
50 uM non-essential amino acids (Lonza, #BEI13-114E), 50 pM
2-mercaptoethanol (Gibco, #31350010), 50 U/ml penicillin and 50 mg/
ml streptomycin (Gibco, #15140122), supplemented with 500 ng/ml
noggin (R&D Systems, # 3344-NG-050), 1 uM Dorsomorphin (StemCell
technologies, #72102) and 10 pM SB431542 (Calbiochem, #616461).
After the initial neural induction step, we differentiated the cells to
NPCs by neural maintenance medium replacement up to day 22. We
cryopreserved iPSCs and NPCs in fetal bovine serum (Cytiva,
#SV30160.03) or neural maintenance medium supplemented with 10%
of DMSO (Sigma, #D2438) for iPSC or NPCs respectively. Before single-
cell encapsulation using the NADIA instrument (Dolomite Bio), we
thawed, filtered, and counted the samples. We retrotranscribed RNAs
captured with the oligo(dT) for cDNA library preparation. Finally, we
sequenced the final Illumina tagged libraries on an Illumina NextSeq
550 sequencer using the NextSeq 550 High Output v2 Kit (75 cycles)
(Illumina, #20024906) in pared-end mode; read 1 of 20 bp with cus-
tom primer ReadlCustSeqB** (5-GCCTGTCCGCGGAAGCAGTGGTAT-
CAACGCAGAGTAC-3) read 2 of 64 and 8 bp for i7 index.

scRNA-seq analysis of Drop-seq data
We processed the iPSC and NPC scRNA-seq libraries using Drop-seq
tools v2.5.1** pipeline to generate DGE matrices. We merged the FASTQ
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files containing paired-end reads into a single unaligned BAM file using
Picard tools v2.27.4%. We tagged the reads with cell and the molecular
barcodes, trimmed them at the 5’ end to remove adapter sequences
and at the 3’ end to remove polyA tails, and mapped them to the
human genome (GRCh38) with STAR v2.7.10°°. We tagged the resulting
BAM files with the annotation metadata using the human GENCODE
v41°7 annotation as a reference. Finally, we performed the cell barcode
correction using the programs DetectBeadSubstitutionError and
DetectBeadSynthesisErrors with default parameters. To estimate the
number of cells obtained, we used a knee plot considering the top
3,000 cell barcodes and generated a DGE count matrix for each
sample.

We used Seurat v5.0.0° and R v4.3.2°% to merge the DGEs and
preprocess the scRNA-seq data. We discarded all genes expressed in
less than four cells and all cells with less than three genes expressed.
We also discarded low-quality cells with less than 300 UMIs, less than
300 genes, and more than 5% mitochondrial gene, and cell artifacts
with more than 20,000 UMIs and 7000 genes. The final Seurat object
contained 2535 cells and 19,103 genes. We performed a dimensionality
reduction analysis using the 2000 most variable genes to calculate 50
PCs. We used the ElbowPlot function to manually inspect the amount
of variability explained by each PC and selected the first 9 PCs to build
the kNN graph and compute the UMAP plot.

Benchmark analysis

We downloaded each of the benchmarked tools from their respective
GitHub repository. For each tool, all commands for its default execu-
tion were integrated into Nextflow workflows and were executed using
the default parameters indicated by the authors. We performed the
benchmark analysis on the preprocessed mouse spermatogenesis
scRNA-seq” data using the GENCODE vM21* GTF and transcriptome
FASTA files as reference annotation. Additionally, we performed a
second benchmark analysis on the preprocessed neuronal cell differ-
entiation scRNA-seq Drop-seq data using the analogous reference files
obtained from GENCODE v41¥. As scAPA only considers disjoint 3’ UTR
regions annotation from the hgl9 version of the human genome for
the annotation of its quantified peaks, we generated a new annotation
of non-overlapping 3' UTR regions using GENCODE v41 and Genomi-
cRanges R package. We intersected all the peaks detected by scAPA'™
following its peak calling process to this new reference annotation.
Following Dapars2 v2.1%° default procedure*, we downloaded the gene
region annotation reference for the human and mouse genome
(GRCh38, mm10) using the UCSC Table browser. Then, we extracted 3’
UTR regions from the gene annotation using Dapars2 script DaPar-
s Extract Anno. Finally, we calculated the raw percentage of distal PAS
sites usage index (PDUI) values using DaPars2 script DaPars2 Multi -
Sample Multi Chr and provided them to scDaPars** to infer their
expression at single-cell level. scUTRquant® was executed using the
target transcriptome annotation files provided in the GitHub reposi-
tory for the human and mouse genomes (hg38 and mm10). These files
included high-confidence cleavage sites called from the Human Cell
Landscape and Mouse Cell Atlas dataset. Additionally, we re-ran
scUTRquant®® using a custom target transcriptomic annotation gen-
erated from the input genome annotation using the Bioconductor
package txcutr v1.8.0°. For each tool, we performed a differential peak
or isoform usage analysis using the default parameters and statistical
test (Sierra: DEXSeq FDR adjusted p-value; scAPA: Chi-square FDR
adjusted p-value; scAPAtrap: Wilcoxon Rank-Sum Test FDR adjusted p-
value; SCAPTURE: Wilcoxon rank-sum test FDR adjusted p-value;
scDapars: two-sided t-test FDR adjusted p-value, scUTRquant: two-
sample hypothesis testing with a bootstrap using weighted utr
expression index FDR adjusted p-value). An adjusted p-value threshold
of 0.05 was used for all genes with at least two peaks or isoforms
detected. For each comparison test, we generated UpSet plots using
the R library UpSetR v1.4.0° for the set of DIU genes co-detected by at

least two tools. We applied a cutoff threshold of 10 genes for each
intersection set.

Isoform validation using nested PCRs

To validate the changes of isoform usage between the iPSCs and NPCs
predicted by SCALPEL, we performed nested PCR as previously
described®*®*. 1 pg of total mRNA extracted using Maxwell® RSC sim-
plyRNA Cells kit protocol (Promega Corporation, #AS1340) was used
as input RNA for the cDNA synthesis using an oligo(dT)-adapter
sequence TAP-VN as a primer for the reverse transcription. For the first
nested PCR, 1 pL of 1:10 cDNA dilution was used, with a gene-specific
primer (GSP) which is shared by all isoforms and an adapter primer
(AP) as a reverse primer. The second nested PCR was performed with
1uL of a 1:10 dilution of the first PCR using a second gene-specific
primer and a second adapter primer (MAP) as a reverse primer. This
second nested PCR reaction that anneals 3’ to the first GSP is essential
to reduce the amplification of undesired products®. The resulting
nested PCR products are resolved by an agarose gel. Primer sequences
are provided in Supplementary Data 21.

Identification of miRNA signatures in differentially regulated
isoforms

To obtain isoform-level identification of miRNA target sites, we
overlapped the genome-wide miRNA target site annotation included
in the MBS database™ with the GENCODE annotation reference v417
(hg38). Target sites of different miRNAs were grouped by their seed
sequences according to miRBase v22.1° The seed-target isoform
pairs were used for downstream analyses. Using a set of
neurogenesis-related miRNA®, we filtered genes displaying changes
in isoform usage between iPSCs and NPCs as predicted by SCALPEL
with at least one isoform targeted by a neurogenesis-related miRNA
and one non-targeted isoform. We normalized the isoform abun-
dances by the number of cells in NPCs and iPSCs and used these
values to calculate their log2 fold changes (log2FC). For each miRNA,
we used a two-tailed Kolmogorov-Smirnov test to check for differ-
ences in the cumulative distribution of log2FC between targeted and
non-targeted isoforms from the same set of genes. The resulting p-
values were FDR-adjusted using Benjamini-Hochberg correction.

Identification of novel cell populations in the mouse 10x dataset
We increased the clustering resolution in the gene and the isoform-
based analyses to identify new cell states. We tested a different number
of variable features in the DGE and iDGE datasets and assessed the
resulting clustering using a range of resolutions. For each parameter
set, we evaluated the concordance between the DGE and iDGE clus-
tering by calculating the Jaccard index between the cell barcodes in
each cluster. Based on this analysis, we selected 4000 variable features
and a clustering resolution of 0.5 for the DGE, and 6000 variable
features with a resolution of 0.9 for the iDGE. Using the markers from
Lukassen®®, we annotated the cell clusters of the gene-based analysis.
For the isoform analysis, we calculated a Jaccard index score between
all gene and isoform clusters (Fig. S8a) and assigned to each isoform-
based cluster the identity of the most similar cluster. We performed
differential isoform analysis using FindAllMarkers function with a two-
tailed Wilcoxon rank-sum statistical test (option min.pct=23, adjus-
ted p-value < 0.05) on the iDGE to identify isoform markers for each
cluster. We visualized the top 100 isoform markers' average expression
within each cluster in the iDGE using the Heatmap function from the
ComplexHeatmap® package along with the average expression of
their corresponding genes in the DGE clusters (Fig. S8d).

Differential gene expression analysis between RS populations

We performed a differential gene expression analysis between the RS6
and other RS populations using a pseudo-bulk approach. We aggre-
gated gene expression values across cell clusters using the Seurat
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function AggregateExpression to generate a pseudo-bulk count matrix.
After removing genes with zero counts, we defined a design matrix
indicating the condition for each sample (RS6-RS cells). Using DESeq2
R library®’, we constructed a DESeq2 object with DESeqDataSetMatrix
function and performed differential expression analysis with DESeq
Jfunction with a two-tailed Wald test. We identified significantly differ-
entially expressed genes with an FDR-adjusted p-value inferior to 0.05
and an absolute log2 fold-change value superior to 0.5.

GO term enrichment analysis

We performed GO term enrichment analysis using the R package
enrichR v3.2, The reference used for the enrichment analysis was the
GO Biological Process_2023%°. We selected all the GO terms using a
one-sided Fisher exact test with an FDR adjusted p-value inferior to
0.05 and visualized the associated adjusted p-value and enrichR
combined scores using ggplot2®’.

Trajectory inference analysis

We used the iDGE-based Seurat object to derive a pseudo-temporal
ordering of the cells using Monocle3 v1.3.47°. First, we converted the
Seurat object into a CellDataSet object which includes the cluster
annotation and the UMAP embedding previously computed. Next, we
fit the principal trajectory graph within each cluster partition using the
function learn graph. Finally, we calculated the pseudotime values
using the function pseudotime and the ES cells as root cells.

Analysis of paired short and long scRNA-seq datasets

We downloaded the FASTQ files for Illumina short-read and PacBio
long-read datasets of four samples from the P28 developmental
stagepoint from Jogleklar et al.** from the Knowledge Brain Map
database (RRID:SCR_016152). These datasets correspond to two sam-
ples from the hippocampus (M1-HIPP, M2-HIPP) and two samples from
the visual cortex (ML-VIS, M2-VIS).

We processed the Illumina short reads FASTQ files using Cell
Ranger v7.1.0*° with the mm10 mouse genome assembly*® and gener-
ated Gene x Cell count matrices. We merged the hippocampus and
visual datasets and analyzed them jointly using Seurat v5.0.0°. We
filtered out cells with <1000 and more than 25,000 UMI counts and
cells with more than 15% mitochondrial gene content. After quality
control, we retained 43,094 cells for 32,285 genes. We performed
dimensionality reduction on the DGE using 2000 genes as variable
features and integrated the data using Harmony” to correct for
sample-specific batch effects’”. Next, we used the first 30 principal
components (PCs) to build the kNN graph and compute a UMAP. We
applied the Seurat function FindClusters with a resolution of 0.05 to
identify 14 clusters and annotated them using known marker genes
from the CellMarkers database’. Then, we reduced the dataset by
selecting the set of barcodes corresponding to excitatory neurons,
astrocytes, neural progenitor cells (NPCs), microglia, and oligoden-
drocytes to retain 32,356 cells. We repeated the dimensionality
reduction analysis using 2000 variable genes and 7 PCs and applied a
clustering resolution of 0.03 to generate five distinct clusters.

We processed the PacBio long-read FASTQ files using the sci-
sorseqr package v5.0.1* First, we deconvoluted the samples with the
32,356 cell barcodes from the short read single-cell analysis using the
function GetBarcodes. Then, we aligned the filtered reads to the mm10
mouse reference genome using the function MMalign, to generate a
BAM file for each cell type. We used the function MapAndFilter to
identify full-length, spliced reads supported by both CAGE and polyA
peaks using annotation references from FANTOMS’? and polyASite™.
We set the filterFulllLength parameter to TRUE to retain only 5- and 3’
complete reads. Finally, we quantified isoform usage for cell types
using the IsoQuant function (Iso = TRUE, TSS = TRUE, PolyA = TRUE).

We applied SCALPEL on the filtered 10x short-read single-cell
dataset, using mouse GENCODE M24 annotation” reference to

generate an isoform-based count matrix (iDGE). We filtered all the
isoforms expressed in less than 4 cells to retain 43,140 isoforms
across 32,356 cells. Using Seurat®, we performed a dimensionality
reduction analysis by selecting 9500 variable features and 10 prin-
cipal components. We integrated the samples with Harmony” with
default parameters to correct for batch effects, then clustered the
iDGE data with a resolution of 0.05. We identified gene and isoform
markers for each cell-type within the data using the Seurat function
FindMarkers with a two-tailed Wilcoxon rank-sum test, an adjusted p-
value < 0.05, and avg.log2 fold-change cutoff of 0.1 (Supplementary
Data 18 and 19. Finally using SCALPEL function Findlsoforms with a
two-tail Chi-square statistical test and default parameters (FDR
Adjusted p-value = 0.05, threshold.var = 0.05, threshold.abund = 0.1),
we identified DIU genes between the distinct cell types (Supple-
mentary Data 20).

Statistical analyses
We performed all the statistical tests in this manuscript using R
v4.3.2%,

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The 10x scRNA-seq samples from male mouse germline” have been
downloaded from GEO database under the accession number
GSE104556. The Drop-seq data from iPSCs and NPCs generated in this
study have been deposited in the GEO database under accession
number GSE268222. FASTQ files from the 10x Chromium 3’seq and
PacBio platform for the mouse hippocampus and visual cortex have
been downloaded from the Knowledge Brain Map database under the
data repository RRID RRID:SCR_016152. Full scans of gels included in
the main article are provided in the Source Data file. Full scans of gels
included in the supplementary data are provided at the end of the
supplementary data file. Raw/intermediate data including the single-
cell datasets analyzed and the simulated reads generated in this paper
are provided on Figshare (project: 249509). The data used for Fig. 2,
S2, S3 are available at https://doi.org/10.6084/m9.figshare.29197175,
https://doi.org/10.6084/m9.figshare.29107757; Fig. 3, S5, S6, S10a are
available at https://doi.org/10.6084/m9.figshare.29180207; Fig. 4, S4,
S7, S8, S10b are available at https://doi.org/10.6084/m9.figshare.
29179352, https://doi.org/10.6084/m9.figshare.29195165; Fig. 5, S9
are available at https://doi.org/10.6084/m9.figshare.29191262.

Code availability

SCALPEL is implemented in R. The code of SCALPEL is publicly avail-
able and has been deposited in GitHub (https://github.com/plasslab/
SCALPEL) under the GNU Affero General Public License (version 3 or
later)’®. The code of scr‘eam is publicly available and has been
deposited in GitHub (https://github.com/plasslab/scr4eam) under the
GNU Affero General Public License (version 3 or later)”. All the scripts
used in this study for the analysis and benchmarking are deposited in
GitHub (https://github.com/Franzx7/SCALPEL analysis_repo)’s.
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