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Abstract

Background

Accurately identifying functionally distinct tumor cell subpopulations remains a critical
challenge in cancer research. While single-cell epigenomics assays provide powerful insights
into tumor heterogeneity beyond gene expression, computational limitations have hindered their
application.

Methods

We introduce Multimodal-based Analysis of scATAC-Seq data (MAAS), a method that
integrates chromatin accessibility, copy number variations (CNVs), and single-nucleotide
variants (SNVs) to identify functional tumor cell subpopulations. MAAS employs a self-
expressive multimodal matrix factorization approach with rigorous coverage normalization and
data denoising. We applied MAAS to simulated datasets and multiple real-world tumor
scATAC-seq datasets, including pediatric ependymoma, B-cell lymphoma, and
glioblastoma, and benchmarked its performance against existing integration methods.
Functional relevance of subpopulation-specific genes was experimentally validated using
gene knockdown and overexpression assays. Furthermore, we constructed subpopulation-
specific gene regulatory networks and developed a prognostic signature from the key
regulatory genes.

Results

MAAS demonstrated superior accuracy in detecting clinically relevant subpopulations,
particularly in tumors with limited CNV heterogeneity, such as pediatric ependymoma and B-cell
lymphoma. In glioblastoma, MAAS uncovered a previously unrecognized subpopulation with

temozolomide resistance and further experimentally validated the effects of its signature genes



through gene knockdown and overexpression. The MAAS-derived prognostic signature,
MAASig, outperformed traditional clinicopathologic features across multiple cancer types when
applied to independent validation cohorts.

Conclusions

By integrating multimodal information from scATAC-seq data, MAAS provides the robust
identification of functionally distinct tumor cell subpopulations, facilitating the discovery of

potential therapeutic targets.
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signature



Background

Cancer cells undergo various genetic and epigenetic changes that drive the formation of distinct
subpopulations during tumor progression [1, 2]. Identifying these critical subpopulations
accurately is essential for developing effective treatments [2]. Single-cell sequencing technologies
have revolutionized our understanding of tumor cellular composition compared to traditional bulk
analyses. Among these, single-cell RNA sequencing (scRNA-seq) is widely used to profile
clinical phenotype-associated subpopulations [3-5]. Although scRNA-seq can distinguish
malignant from non-malignant subpopulations and examine cell heterogeneity by analyzing
expression-derived genetic mutations such as copy number variations [6, 7], it often fails to
identify the clinically relevant subpopulations that are not solely linked to gene expression [8]. This
limitation arises because scRNA-seq primarily captures franscriptional activity and often
overlooks critical epigenetic and regulatory changes [9, 10].

Single-cell epigenomics assays, such as single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq), enable robust profiling of cell subpopulations beyond
gene expression and can reveal distinct regulatory information that controls gene expression.
However, applying scATAC-seq to study tumor subpopulations has been computationally
challenging due to inherent data sparsity, technical noise, and variable cell-to-cell sequencing
depth that can confound clustering analyses. Traditional methods, such as Copy-scAT and
epiAneufinder, mainly rely on CNVs [11-13], to determine the genetic heterogeneity of tumor
cells. Despite these advances, CNV analysis alone often fails to detect clinically relevant tumor
subpopulations. For example, melanoma subpopulations with varying anti-PD-1 responses are
better characterized by their distinct point mutation profiles rather than CNV events [7].

Furthermore, the interplay between genetic and epigenetic changes enables subpopulations to



circumvent therapeutic barriers, promoting cancer progression [14, 15], thus highlighting the
need to integrate these features. Unfortunately, existing methods fail to fully utilize the spectrum
of epigenetic and genetic information available from scATAC-seq data. These methods are also
limited in delineating tumor cell subpopulations with low CNV heterogeneity, such as those found
in hematopoietic and pediatric cancers [16]. Additionally, scATAC-seq data often exhibit inherent
high sparsity and technical noise, posing significant challenges in determining informative features
for dissecting tumor cell subpopulations [17].

Here, we presented a novel computational method called Multimodal-based Analysis of
scATAC-Seq data (MAAS) that accurately identifies tumor cell subpopulations and infers their
evolutionary lineages by integrating informative multimodal features, including CNVs, single-
nucleotide variants (SNVs), and chromatin accessibility data. To overcome the technical
challenges of scATAC-seq analysis, MAAS implemented rigorous normalization procedures to
correct for variable cell coverage and employed robust denoising strategies for sparse SNV data.
Our approach quantitatively assesses thie contribution of each data modality, allowing for the
identification of subpopulations driven predominantly by one modality, particularly in tumors
with limited CNV heterogeneity. MAAS outperformed other state-of-the-art methods on both
simulated and real datasets. In pediatric ependymoma, a cancer with low CNV heterogeneity,
MAAS identified a progressive tumor cell subpopulation associated with multidrug resistance.
When applied to a glioma tumor, MAAS uncovered a previously overlooked subpopulation
resistant to temozolomide, which was subsequently experimentally validated. Furthermore, we
developed a MAAS-derived multimodal clinical signature by integrating subpopulation-specific
gene regulatory networks (GRNs), which provided a more accurate prognostic prediction than

traditional clinicopathologic characteristics and existing signatures across multiple cancer types.



In conclusion, MAAS is a reliable and robust tool for identifying clinically relevant tumor cell
subpopulations, facilitating the discovery of new disease mechanisms and enhances tumor

diagnosis and therapeutic strategies.

Methods

Datasets used in this study

All the data in this study are publicly available. The scATAC-seq datasets used for
MAAS analysis comprised the K562 cell line (n = 2 from GSE243430) [18], the
SNU601 gastric cancer cell (n = 1 from PRINA674903) [19], two ovarian cancer (OC)
cohorts (n = 3 from phs002340.vl.pl [20] and n = 10 fiom GSE247982 respectively
[21]), pediatric posterior fossa ependymoma (PPFE) (n = 4 from GSE206579) [22], B-
cell lymphoma (n = 1) [23], adult glioblastioma (GBM) (n = 4 from GSE139136) [24],
pediatric GBM (n = 3 from GSE162655) [24], hepatocellular carcinoma (HCC) (n = 13
from GSE227265) [25], clear cell renal cell carcinoma (ccRCC) (n = 19 from
GSE207493) [26]. In addition, an scATAC-seq dataset coupled with whole-exome
sequencing data (n = 2 from PRINAS533341) was used for validation of CNV calling
[27].

Bulk RNA-seq datasets used for drug resistance analysis included PPFE (GSE42658,

n = 14; [28]; GSE13267, n = 17 [29]; GSE66354, n = 55 [30]) and GBM (GSE53014,

n = 12 [31]; GSE68029, n

12 [32]; CGGA693, n = 289; and CGGA325, n = 139
[33]). Bulk ATAC-seq data for B-cell lymphoma with treatment information were

obtained from GSE254913 (n = 8) [34].



Bulk RNA-seq datasets for signature analysis included GBM (The Cancer Genome
Atlas (TCGA), n = 153 [35]; CGGA [33]), OC (TCGA, n = 357 [35]; GSE140082, n =
380 [36]; GSE32062, n = 270 [37]), B-cell lymphoma (GSE181063, » = 1310 [38];
GSE10846, n = 420 [39]; GSE136971, n = 448 [40]), hepatocellular carcinoma (TCGA, n
= 341 [35]; GSE116174, n = 64 [41]; GSE76427, n = 115 [42]), clear cell renal cell
carcinoma (TCGA, n = 504 [35]; EEMTAB-1980, n = 92 [43]; CPTAC, n = 53 [44]). In

all datasets, n denotes the number of samples.

scATAC-seq data analysis

We used the SRA Toolkit (v2.10.9) [45] to obtain FASTQ files of raw sequencing data, which
were then aligned to the GRCh38 reference genome using 10x Genomics Cell Ranger ATAC
(v2.1.0) software [46] with default parameters. We then used the Signac [47] package to obtain a
cell-by-peak matrix. High-quality cells werc retained based on transcription start site enrichment
(> 3), the number of unique fraginents (> 1000), percentage of reads in peaks (> 15%), blacklist
ratio (< 5%) and nucleosonie signal (< 4). To account for varying coverage across cells, we
performed term frequency-inverse document frequency (TF-IDF) normalization, applying a log-
transformation to both the TF and IDF elements [48]:

C.
Normalized peak=log(TF ) log|IDF)=1log (FU) xlog (%) (D

j i

where Cj; is the total number of counts for peak i in cell j and F; is the total number of counts for
cell j. For the IDF term, N denotes the total number of cells and n; represents the total number of
counts for peak 7 across all cells. To correct batch effects across samples, we performed ComBat

[49] analysis using the R package sva [50]. In addition, a cell-by-gene score matrix used for

functional enrichment analysis was obtained using the GeneActivity function implemented in



Signac. Differentially accessible chromatin regions (DACRs) were identified using the
FindAllMarkers function by regressing out the library size. Details of tumor cell identification
were provided in the Additional file 1: Supplementary Methods. The quality control metrics

of each dataset analyzed in this study were summarized in Additional file 1: Table SI.

Mutation calling

We benchmarked two CNV callers (epiAneufinder [12] and Copy-scAT [11]) for scATAC-seq
data. Based on the benchmarking results, we selected epiAneufinder [12] for MAAS analysis
(Additional file 1: Figs. S1 and S2). Additionally, we employed SCoinatic [51] for somatic SNV
calling and evaluated seven tools for SNV denoising (Additional file 1: Figs. S3-S6). Based on the
results from the SNV denoising benchmark, we selected CBM [52] as the preferred method for this
study. Further details are provided in Additional file 1: Supplementary Notes 1-2 and

Methods.

Cell affinity estimation in each feature layer
We first corrected the chromatin accessibility profile according to the prior knowledge that copy

number gain leads to an aberrant high peak density and vice versa.

ij-fx(rpe(j)-Z)Xij, if jﬁR:m(j)#’@/ and x> 2;
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where X ,; and X ; indicate the raw and adjusted peaks j of cell p, respectively, and I',(;) indicates

the observed copy numbers containing the region j. The hyperparameter ¢ indicates the prior

regarding the effect of copy number on chromatin accessibility, with values ranging from 0



to 1 (default: 0.5). We demonstrated the necessity of this correction, as well as its
robust performance across different values of & (Additional file 1: Figs. S7-S9). A higher
value of ¢ indicates a stronger assumed influence of copy number on chromatin
accessibility levels. Specifically, when & is set to 1, it suggests that increased chromatin
accessibility is entirely dependent on copy numbers. Conversely, lower values of ¢ reflect a
weaker or more nuanced relationship between CNVs and chromatin accessibility. This parameter
facilitates flexible modeling of the extent to which CNVs are presumed to drive changes in
chromatin accessibility. R, and R,,(; represent the copy number gain and loss region of cell
p, respectively. Then, we calculated the affinity between cell p and g (default: cosine). The

Hamming distance was used to estimate the cell similarity based on CNVs or SN'Vs.

MAAS structure
We employed a modified non-negative matrix factorization to jointly integrate multiple
modalities for dimension reduction of affinity matrices A'). The model aimed to identify a
consensus low-dimensional space W that simultaneously encodes different layers, along with
diagonal matrices H " to representing the coefficients of latent factors to be projected into this
space:
AV~ AW H W 3)

We noted that A" serve as self-expressive terms, indicating that our multimodal integration

method can learn and maintain local structure for subspace clustering (Additional file 1:

Supplementary Note 3). Given the input terms, our model minimizes the loss function as

follows:
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Multiplicative update rules were utilized through the stochastic gradient descent as follows:

W~ W-(P VWQ(A(i), w, Hm)
(i) (i) (i) (i) ®)
H"«H"-nV _.Q(A", w, H")
where
VWQ:-Z [A(l)(A(l)_A(l)WH(I)WT)WH(1)+(A(1)_WH(I)WTA(1)>A(1)WH(1)]

(6)
V.0Q=-[Z)T(A"-z)H'W" )W, where Z'=A"'w

Therefore, we could obtain that

w-p V,Q(A", w, H")=w+2¢3 [A"FWH"-9 3 [A(A" W H W) +(

(7
H'-nV (A", w, H)=H"+n[z0'w-5i )] (z)'H"'W")w
Based on the derivatives, the learning rate for the rule was denoted as
0= AW
z [A(')(A(I)W* H\)WT)+(WH(I)WTA(1)>A(1)]WH(1)
®)

A block coordinate descent scheme was implemented, in which we optimized based on only
one rule and kept others fixed. Finally, we implemented the decompositions using hand-solved

equations

We2xW — ! : — .
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The gradient descent terminated when the condition <10 could be met (Additional

Qi.1-Q;
file 1: Fig. S10). The optimized process of our model is provided in Additional file 1:
Supplementary Note 4. Tumor cell subpopulations were identified by applying K-means
clustering to the latent factor matrix W. To determine the optimal number of clusters,
we systematically evaluated a range of cluster numbers (from £ = 2 to k& = 10) and the
dimensions of W (from 2 to 7), and calculated four widely used clustering validity indices
[53-56]: the silhouette index, Davies-Bouldin index, Dunn validity index, and Calinski-
Harabasz index. These metrics respectively assess intra-cluster cohesion, inter-cluster
separation, cluster compactness, and overall partition quality. To integrate these into a
single measurement, we proposed a composite score termed the S-score (Additional file 1:
Supplementary Methods), which normalizes and combines the four indices into a weighted
sum. The cluster number with the highest S-score was selected as the optimal resolution,
and the corresponding K-means partition was used to define tumor cell subpopulations. The
S-scores of each clustering assignment based on MAAS embedding across datasets were

summarized in Additional file 1: Fig. S11.

Contribution of modalities
We quantified the contribution of each modality by calculating the normalized trace, defined as
the sum of diagonal values of the corresponding matrix. The contribution of modality i is given

by

I . wace(H") _ ||H"]
Contribution of modality i = Ztrace(H(t))ZZHH(SHl (10)
t t
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where trace (-) represents the sum of the diagonal elements, and HHl denotes the L1 norm. A larger
trace value indicates a higher weight or greater influence of the corresponding modality in cluster
assignment. Namely, this metric allows for a quantitative comparison of the relative importance

of different modalities in predicting tumor subpopulations.

Construction of cell hierarchy
The consensus cell-affinity matrix was initially computed based on W. Alternatively, it could be
derived from the features of individual modalities. The evolution tree was reconstructed using

the minimum evolution algorithm [57], as implemented in the R package ape [58]. To visualize

the resulting tree, we employed the ggtree [59] package, utilizing the “ape” layout.

Tumor cell identification

We employed a comprehensive approach to identify tumor cells based on multiple criteria. For
each dataset, tumor cells were 1dentified using a combination of: 1) CNV profiles characteristic of
the cancer type, 2) markei gene accessibility specific to cancer cells, 3) known tumor-specific
epigenetic signatures, and 4) clustering patterns consistent with malignant populations. For the
glioma dataset specifically, tumor cells were identified based on characteristic CNVs including

chromosome 7 gain and chromosome 10 loss, which are hallmark alterations in glioblastoma.

Multidrug sensitivity of PPFE cell subpopulations
We used scRank [60] to calculate perturbation scores of each drug, including etoposide,
vinblastine and vincristine. Edges with weight lower than 0.9 were removed. To identify gene

modules across samples, we used the NMF implemented in the R package GeneNMF [61] by
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setting the number target NMF components for each sample from 4 to 9, and 10 target meta-
modules were determined by hierarchical clustering with minimum confidence of 0.1. We then
estimated drug-target module activity using the AddModuleScore function in the Seurat package
[62]. Additionally, we used oncoPredict [63] to calculate the half maximal inhibitory
concentration (ICsy) of ependymoma patients from the GSE13267 [29] and GSE66354 [64]

cohorts.

TMZ response of GBM tumor cell subpopulations

We first used oncoPredict [63] to predict ICso of GBM patients in the CGGA693, CGGA325 and
TCGA cohorts, respectively, by performing linear regression. Specifically, drug response data
from GDSC2 [65] were utilized as the training set, while the three bulk RNA-seq datasets
served as the test set. Genes with a median absclute deviation less than 0.15 were excluded from
the regression analysis. We then used the calcPhenotype function to predict ICs, for each patient.
The parameters were set as follows: powerTransformPhenotype set to FALSE,
removeLowVaryGenes set to 0.2, removeLowVaringGenesFrom specified as ‘rawData’, and
minNumSamples set to 10. Patients were subsequently stratified into sensitive and resistant groups
based on the median cutoff of ICsy score. Next, we applied Scissor [3] to predict the therapeutic
phenotype of each cell using binomial regression model. Prediction performance was estimated
using the reliability.test function with 1000 permutation times and 10-fold cross-validation.
Additionally, we calculated the E-distance between tumor cell clusters and experimentally
determined TMZ-sensitive and resistant subpopulations using the edist function from the R package

Rfast [66], based on gene activity inferred from scATAC-seq data. To reduce the impact of sample

13



size on distance computation, we randomly selected 100 cells from each cluster and repeated this

procedure 500 times.

Identification of cluster 2-specific genes for experimental validation

We screened cluster 2-specific genes for experimental validation of TMZ resistance based
on the following steps: Firstly, we identified genes with significant increasing expression in
TMZ-resistant GBM cell lines [67] by GEO2R [68], including LNZ308 and U251, with
the thresholds of logFC > 0.25 and adjusted P-value < 0.1. The ICsy values of the
resistant GBM subpopulations showed > 2-fold increase in TMZ-resistance compared to
the parental cell lines [67]. Then, we selected genes with prognostic significance by both
log-rank test and univariate Cox regression with the threshoids of HR > 1 and P-value <
0.05. Finally, we examined the overlapped TMZ-resistance relevant genes, survival-related

genes and cluster 2-specific genes.

Cell culture

HEK293T, U-87 MG cells (Cell bank of Chinese Academy of Sciences, Shanghai), and U-251
MG cells (a generous gift from Dr. Tengfei Guo) were cultured in high-glucose DMEM containing
10% FBS (VISTECH) and 1% penicillin/streptomycin (Thermo Fisher Scientific). All cell lines
were routinely tested and confirmed to be free of mycoplasma contamination was detected

during cell culture.

RNA preparation and quantitative RT-PCR

Total RNA was extracted with Quick-RNA™ Miniprep Kit (Zymo Research), followed by cDNA

14



synthesis with a GoScript™ Reverse Transcription System (Promega). Quantitative RT-qPCR was
performed in a Real-Time PCR system (Bio-Rad) using SYBR Green Supermix (CWBIO). The

primer sequences used are listed in Additional file 1: Table S2.

Lentivirus preparation and titration

To construct lentiviral vectors expressing shRNA targeting TPSTI, RFTNI and ADAMTSI,
corresponding shRNA oligonucleotides (Additional file 1: Table S3) were inserted into the
cloning site of pLKO.l (Addgene, # 10878) following the manufacturer’s instructions. All
constructs were validated by Sanger sequencing. Lentivirus was packaged as previously
described [69]. Briefly, viruses were harvested from HEK293T celis transfected with the indicated
plasmid and the packaging plasmids pMD2G and psPAX?2 using PEI MAX transfection reagents
(Polysciences), concentrated and titrated. For virus tiiration, viruses were tested by counting the
U-87 MG or U251 MG cell clones after 3 pg/mL puromycin (Beyotime Biotechnology)

selection.

Cell proliferation assay

For cell proliferation assay, U-87 MG cells were infected with indicated shRNA targeting
TPSTI, RFTNI, and ADAMTSI. After 3 pg/mL puromycin selection, U-87 MG cells were re-
plated 1000 cells per well on 96-well plates. Cell viability was determined using Cell Counting
Kit-8 assays (CCK-8) by measuring the absorbance at 450 nm using a microplate reader (BioTek),

following the manufacturer’s instructions (Beyotime Biotechnology).

TMZ chemosensitivity assay
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As previously described [70]{Zou, 2021 #433}, U-87 MG and U251 MG cells were infected with
indicated shRNA or 7PSTI overexpression vector, after 3 pg/mL puromycin selection.
Subsequently, the surviving cells were allowed to recover in fresh growth medium for 2
days. The infected cells were re-plated 5000 cells per well on 96-well plates. Following 24 hours
of incubation, the medium was replaced with fresh medium containing 50 uM or 200 uM TMZ.
Cells were then cultured for another 24 hours and cell viability was assessed using the CCK-8
(Beyotime Biotechnology) according to the manufacturer’s protocol. Absorbance at 450 nm was

measured using a BioTek microplate reader to determine viability.

Statistical analysis

The Wilcoxon rank-sum test [71] or Student’ s t-test [72] (sample size < 10) were used
to compare quantitative measures between groups of interest. Comparisons of relative
frequencies were performed by Fishier’ s e¢xact test [73]. In addition, we performed several
survival analyses to investigate the prognostic relevance of tumor subpopulation-specific genes.
Samples were stratified into two groups based on the median cutoff. Survival curves of the two
patient groups were evaluated using the Kaplan-Meier approach [74]. The statistical significance
was calculated using a two-tailed log-rank test. We used the survival R package [75] for Cox
analysis and the two-tailed Wald test [76]. Time-dependent AUC and C-index were calculated

using the R packages survivalROC [77] and survival [75], respectively.

Results

MAAS achieved superior accuracy in predicting tumor cell subpopulations
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To delineate cellular heterogeneity in tumors, we developed an algorithm called MAAS to
accurately identify tumor cell subpopulations by integrating genetic and epigenetic features
derived from scATAC-seq data (Fig. la). Specifically, MAAS infers a consensus low-
dimensional latent factor that encodes multiple modality features, including CNVs, SNVs and
chromatin accessibility, which are subsequently used for tumor cell subpopulation identification.
To mitigate potential biases from CNVs, which often confound the quantification of chromatin
accessibility [78], MAAS incorporates a weighted correction strategy to adjust for this effect.
Additionally, given the sparsity and noise inherent in SNVs derived from scATAC-seq data,
MAAS utilized a parametric algorithm CBM [52], which outperforms other denoising
algorithms in correcting false discoveries according to our benchinarking analysis, thus
enabling accurate profiling of somatic mutations in individual cells (Fig. 1a; Additional file 1:
Figs. S4-S6 and Supplementary Note 2). Cell siimlarities were then estimated using cosine
distance for chromatin accessibility and harmmining distance for CNV and SNV. MAAS integrated
these three cell-by-cell matrices Al (i = 1, 2, 3) using multimodal non-negative matrix
factorization, optimized by a multiplication update algorithm, generating a latent variable W
and three diagonal coefficient matrices g upon convergence (Fig. 1b). Notably, MAAS
leverages correlation matrices A" as self-expressions to further enhance clustering accuracy [79],
and the contribution of each modality is estimated by the trace of g (Fig. 1c). Finally,
tumor cells are classified into subpopulations using K-means clustering, and a minimum evolution
tree depicting subpopulation relationships is constructed (Fig. 1c).

To systematically evaluate the performance of MAAS, we conducted a simulation analysis
to determine its ability to accurately deconvolute labeled tumor cell subpopulations. We first

generated three simulated cell clusters as ground truth datasets, where clusters 1 and 2 shared
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different genetic features compared to cluster 3, while also exhibiting distinct chromatin
accessibility profiles (Fig. 2a). MAAS successfully separated clusters 1 and 2, which were
indistinguishable using single-modality approaches (Fig. 2a and b). Specifically, MAAS
identified 92.71%, 94.85%, and 95.12% of the three clusters, respectively (Fig. 2c). When tested
on four simulated cell clusters, MAAS accurately identified 93.96%, 95.17%, 98.48% and
56.03% of cells in clusters 1 to 4, respectively (Additional file 1: Fig. S12a-c).

To further evaluate the robustness of the MAAS method, we compared it with other multi-
omics integration and clustering tools, including uniform manifold approximation and projection
(UMAP) [80], intNMF [81], PintNMF [82], SNF [83], LRACluster [84], MCIA [85], MOFA
[86], multiVI [87], MOJITOO [88], SEACells [89], scOpen [90] and CoGAPS [91]
(Additional file 1: Supplementary Methods). We began by randomizing the tumor cell clusters
and evaluated the performance using three metrics: the adjusted Rand index (ARI), normalized
mutual information (NMI), and V-measure. MAAS significantly outperformed UMAP multimodal
clustering (Additional file 1: Fig. S12d), other integration methods, and the single-modality
method CBM [52] with thie median ARI, NMI, and V-measure values of 0.912, 0.833, and 0.849,
respectively (Fig. 2d). Additionally, we varied the number of cells per tumor cluster for each
simulation and found that MAAS consistently achieved the highest ARI, NMI, and V-measure
scores, and cell number had a minimal effect on MAAS performance (Additional file 1: Figs.
S12e and S13). Further examining the impact of the cluster number on clustering performance
demonstrated that MAAS outperformed alternative methods across a diverse range of cluster sizes
(Additional file 1: Fig. S12e and f). We also evaluated clustering performance under different
levels of data sparsity, ranging from 10% to 90%, and found MAAS consistently showed superior

performance, maintaining over 40% correct classification even at the 90% of data sparsity
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(Additional file 1: Fig. S12g). To validate the accuracy of cell hierarchy reconstruction,
we utilized mutual cluster information, a generalized Robinson-Foulds metric [92]. Notably,
MAAS demonstrated superior performance across a range of subpopulation numbers,
achieving a median mutual cluster information score of 0.811. In contrast, MOFA and
intNMF showed markedly lower performance, with median scores of 0.719 and 0.595,
respectively (Additional file 1: Fig. S14). Ablation analysis revealed that the simultaneous
integration of chromatin accessibility, CNVs, and SNVs outperformed any pairwise
combination or single-modality approach (Additional file 1: Fig. S15). Additionally, we
evaluated the computational efficiency with respect to the total number of cells. We
found that MAAS was more scalable than other matrix factorization-based methods such
as CoGAPS and PintMF, ranging from ~1 hours and 0.4GB for 400 cells to ~44 hours and
24 GB random access memory for 20,000 celis (Additional file 1: Fig. S16).

Moreover, we applied MAAS to a K562 dataset which generates both ATAC and
whole-genome sequencing (WGS) data from the same cell [93]. The overall clustering
results showed high consistency with those obtained using scATAC-seq data alone
(Additional file 1: Fig. S17). We also compared the performance of MAAS with CNV
estimates derived from single-cell WGS (scWGS) data for gastric cancer [13]. MAAS accurately
recovered the four tumor cell clusters characterized by the amplification of chromosomes 1 and 3
and the deletion of chromosomes 4 and 18, with an average Pearson’s correlation of 0.885
(Additional file 1: Fig. S18). To further access the performance of MAAS in identifying
clinically pertinent tumor cell subpopulations, we benchmarked MAAS in a real OC scATAC-
seq dataset from three tumors [94], the MAAS method effectively identified metastatic tumor cells

from primary ones and accurately distinguished tumor cells at different pathological stages (Fig.
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2g and h and Additional file 1: Fig. S19). In another OC dataset [95], MAAS accurately
distinguished treated from non-treated cells, and revealed the heterogeneity within both
treated and non-treated populations by identifying seven subpopulations characterized by
distinct cluster-specific CNVs, such as gain of chromosomes 1q (C5), 12p (C6) and 19q
(C1), as well as losses of chromosomes 8p (C6) and 9p (C5) (Additional file 1: Fig.
S20). Overall, MAAS demonstrated superior performance in predicting tumor cell subpopulations

compared to state-of-the-art methods.

MAAS detected clinically relevant tumor cell subpopulations with low CNVs

Many tumors, such as pediatric ependymoma, exhibit a low frequency of CNV events, often less
than 10% [96], posing a great challenge for traditional methods in resolving tumor heterogeneity.
To demonstrate the utility of the MAAS method in detecting subpopulations with low CNVs, we
applied it to a sScATAC-seq dataset of PPFE [97]. Our analysis revealed that MAAS accurately
predicted the three major tumor cell subpopulations from 2,428 tumor cells (Additional file 1:
Figs. S21 and S22), providing a clearer distinction between tumor cell clusters than the traditional
methods (Fig. 3a-d and Additional file 1: Fig. S23). Functional enrichment analysis of the
MAAS-predicted clusters showed that the MAAS not only recovered traditional hallmark cancer
pathways but also identified an additional subset of cancer-related pathways enriched specifically
in clusters 1 and 3, such as DNA repair, E2F targets and p53 pathway (Fig. 3b). This
suggests clusters 1 and 3, driven primarily by chromatin accessibility and SNVs, represents
functional subpopulations detected by MAAS (Fig. 3¢). We then evaluated the proliferation and
migration characteristics of each cluster using key proliferation signature genes [98, 99] (MKI67,

PCNA, IGF1, ITGB2, PDGFC, JAGI, PHGDH, BCL?2) and migration-related genes [100, 101]
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(ARID5B and FATI) (Additional file 1: Supplementary Methods). Cluster 1 exhibited
significantly higher proliferation and migration scores than clusters 2 and 3 (Fig. 3d), indicating its
strong metastatic potential and highly aggressive phenotype. Additionally, deconvolution
analysis based on cluster-specific genes applied to a bulk RNA-seq pediatric ependymoma
dataset [102] revealed that patients with grade III tumors exhibited significantly higher
abundance of cluster 1 compared to those with grade II tumors (Fig. 3e and Additional file
1: Supplementary Methods). Given the highly differential chromatin accessibility profiles,
we reasoned that these differences might reflect dynamic cellular state changes.
Therefore, we used Monocle [103] to reconstruct developmental trajectories and observed two
stepwise transitions: from cluster 2 to cluster 1 and cluster 2 to cluster 3 (Fig. 3g and Additional
file 1: Supplementary Methods). To further validate the dynamic changes between MAAS-
predicted clusters, we generated a minimum-evolution tree to depict the evolutionary process and
found that cluster 3 had the highest mutation burden and chromatin accessibility, followed by
cluster 1 (Fig. 3h and i; Additional file 1: Figs. S24-S25).

We then investigated the response of MAAS-determined clusters to several first-line
chemotherapeutics, including etoposide, vinblastine and vincristine. First, we estimated the drug-
resistant subpopulation using scRank [104] (Methods) and observed that new cluster 1 exhibited
lower perturbation scores than clusters 2 and 3 for each of the three drugs (Fig. 3j), suggesting
that cluster 1 is more drug-tolerant. Additionally, cluster 1 had significantly lower scores for the
drug-target gene modules of all three drugs, as determined by the activity of the drug-target gene
module (Fig. 3k and [; Additional file 2: Data S1; Wilcoxon rank-sum test, all P-values < 0.05).
We then performed deconvolution analysis for pediatric ependymoma patients (Supplementary

Methods) and found that drug-resistant samples contained an average of 85.71% more cluster 1 cells
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(Fig. 3m). To identify potential targeted therapies for cluster 1, we screened data from the
LINCS consortium [105] for compounds that selectively target cluster 1-specific transcription
factors and kinases (Additional file 2: Data S2). This analysis identified two FDA-approved
antineoplastic drugs, including everolimus and trametinib, that significantly decreased the
expression level of ERN2, ESRI, FLTI, NRIH4, SHOX, SPI110, and ZNF365 (Fig. 3n).
Collectively, our analyses demonstrate the MAAS’s effectiveness in detecting clinically relevant
subpopulations with low CNV heterogeneity but significantly differential therapeutic
vulnerabilities.

Moreover, we applied MAAS to a 10x multiome dataset of B-cell lymphoma [23]
characterized by minimal CNV burden [106]. This dataset contains paired scRNA-seq and
scATAC-seq data measured for each cell. Comparative evaluation against conventional single-
modality methods, such as inferCNV [107] and CopyKAT [6] that are widely used to identify
tumor cell subpopulations using gene expiession-derived copy numbers, as well as dual-
modality combination of gene expression and chromatin accessibility (Additional file 1:
Fig. S26), demonstrated MAAS’ s superior capability in partitioning 2,077 malignant cells into
nine molecularly distinct clusters (Additional file 1: Fig. S27), despite the limited CNV
heterogeneity of this malignancy. Notably, although these clusters shared comparable
transcriptional profiles, they displayed marked divergence in SNV and chromatin accessibility
profiles (Additional file 1: Fig. S27b-e). Three lines of evidence substantiate their biological
distinctness. First, genetic exclusive analysis revealed 181 cluster-specific SNVs distributed
across the nine clusters (Additional file 1: Fig. S27b; chi-square test, FDR < 0.05), supporting
their classification as genetically distinct subpopulations. Second, epigenetic precedence was

evidenced by elevated chromatin accessibility of 3,077 transcriptionally stable genes in cluster 3
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(Additional file 1: Fig. S27f-g), in line with established principles of epigenetic regulation
mechanisms where chromatin accessibility changes often precedes gene expression changes
[108]. Third, the clusters showed significantly functional differences, as we further calculated the
E-distance between MAAS clusters with wild-type versus SUMO-activating enzyme inhibitor-
treated B-cell lymphoma cell lines, separately (Additional file 1: Supplementary Methods).
Cluster 3 exhibited the significantly longest E-distance to the drug-treated subpopulation
(Additional file 1: Fig. S27h; Kruskal-Wallis test, P-value < 0.01), suggesting intrinsic drug
resistance. These findings highlight the value of multimodal analysis in identifying functionally
relevant subpopulations that are not apparent from gene expression data alone, particularly in cancer
types with subtle CNV differences. Collectively, our analyses demonstrate the MAAS’ s
effectiveness in detecting clinically relevant subpopulations with low CNV heterogeneity but

significantly differential therapeutic vulnerabilities.

MAAS enabled high-resolution identification of a temozolomide-resistant glioma
subpopulation

GBM is the most common and aggressive primary brain malignancy in adults [109]. To
investigate the heterogeneity of GBM, we applied MAAS to a scATAC-seq dataset of adult
GBM [11] (patients CGY4218, CGY4250, CGY4275 and CGY4349) containing 866 tumor
cells (Additional file 1: Figs. S28 and S29). MAAS not only recapitulated tumor clusters
identified by traditional single-modality approaches, but also resolved a finer subcluster (cluster 2)
within a previously defined major cell population at higher resolution (Fig. 4a and b;
Additional file 1: Fig. S30). Function enrichment analysis of cluster 2 showed significant

enrichment in apoptosis, angiogenesis, and KRAS signaling pathways (Fig. 4c), indicating the
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functional heterogeneity within the major cell population. To trace tumor progression, we
constructed a minimum-evolution tree that mapped the developmental trajectory of GBM tumor
cells (Fig. 4d and e; Additional file 2: Data S3). Notably, cluster 2 exhibited 4,188 DACRs and
one cluster-specific SNV (Fig. 4e; Additional file 1: Fig. S31), indicating that chromatin
remodeling and mutational events collectively define this unique cluster. Importantly, this
SNV was localized within one of the identified DACRs (chr4: 147103187-147104189) (Fig.
41). Detailed inspection of the chromatin accessibility coverage at this locus further confirmed the
co-occurrence of the SNV and DACR (Fig. 4g), supporting a possible interplay between genetic
and epigenetic alterations that may contribute to the functional heterogeneity of glioblastoma.
These findings were further validated using an independent pediatric GBEM (pGBM) dataset [11]
(Additional file 1: Fig. S32 and Supplementary Methods).

To evaluate the therapeutic significance of MAAS-identified clusters, we examined
their association with temozolomide (TMZ) resistance, the first-line chemotherapeutic for
glioma. We first linked the gene activities of each cluster to the half-maximal inhibitory
concentration (ICsp) of TMZ (Methods). Cluster 2 exhibited significantly greater resistance to TMZ
(Fisher’s exact test, P-value = 2.28x107), with accurate predictions supported by the area under
the curve (AUC) values 0f 0.791, 0.733, and 0.694 (Fig. 4h; Additional file 1: Fig. S33a and b).
To further validate these findings, we calculated the energy distance (E-distance) [110] between
MAAS clusters and TMZ-associated subpopulations from six glioma cell lines [67, 111]
(Methods). Cluster 2 consistently showed the shortest E-distance to TMZ-resistant
subpopulations (Fig. 4i and Additional file 1: Fig. S33c; Wilcoxon rank-sum test, P-value <
0.0001). Additionally, the cluster 2 was further validated using an independent GBM dataset

(Additional file 1: Figs. S34 and S35). To experimentally confirm the TMZ resistance of
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cluster 2, we conducted knockdown experiments in the U-87 glioblastoma cell line.
Downregulation of cluster 2-specific genes, such as 7TPSTI, ADAMTSI, RFTNI,
significantly reduced TMZ resistance (Fig. 4j-k; Additional file 1: Fig. S36). Moreover,
re-expression of TPSTI restored TMZ resistance in the rescue experiment (Fig. 4k).
Additionally, overexpression experiments further confirmed the role of cluster 2 in
conferring TMZ resistance in the U251 cell line (Fig. 4m). In summary, MAAS identified a
glioma cell subpopulation with strong TMZ resistance at high resolution, underscoring the
potential of the MAAS method as a powerful tool for accurately classifying clinically relevant

glioma cell subpopulations.

A new MAAS-derived clinical signature across multiple cancer types

To evaluate the clinical utility of the MAAS method, we developed a new MAAS-derived
clinical signature named MAASig, based on the expression of genes identified from
subpopulation-specific GRNs (Fig. 5a; Additional file 1: Supplementary Methods). MAASig
was constructed by first identifying subpopulation-specific open chromatin accessible regions
and marker genes, followed by inferring cis-regulatory links [112] between these regions and
their target genes. Transcription factors (TFs) significantly enriched in the DACRs and
regulatory links connecting to subpopulation marker genes were retained for GRN construction.
Finally, TFs and their target genes from the GRNs of all subpopulations were aggregated to
define the candidate signature genes. To develop the prognostic model, we employed an
ensemble learning approach with 10-fold cross-validation to prevent overfitting. The most robust
features were selected using four complementary feature selection algorithms: LASSO, stepwise

Cox regression, CoxBoost and random survival forest. Each cancer-specific model was
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validated on independent external cohorts that were not used during model training. In addition
to glioblastoma, ovarian cancer and B-cell lymphoma, MAASig was applied to HCC and ccRCC
(Additional file 1: Tables S4-S6). Across all five cancer types, MAASig demonstrated significant
prognostic value and superior prediction accuracy (Fig. 5b and c; log-rank test, P-values =
1.61x107%, 1.52x107'% 5.34x10*' 1.53x10* and 1.73x10% respectively), outperforming
traditional clinicopathologic variables and other existing signatures (Fig. 5c; Additional file 1:
Figs. S37-S39, Table S7 and Supplementary Methods). For example, in GBM, MAASig
achieved an average concordance index (C-index) of 0.861 and a time-dependent AUC of 0.925,
significantly outperforming clinical characteristics such as age, /[DH mutation status, 1p19q
copy numbers, and MGMT promoter methylation status (Fig. 5b and Additional file 1: Fig.
S37). Similarly, in ccRCC, MAASig consistently achieved the highest prediction accuracy, with an
average C-index 0f 0.902 and a time-dependent AUC 0f0.925 (Fig. 5b and Additional file 1: Fig.
S37). Notably, MAASig remained significantly independent of other clinical features in both
training and test sets across the cancer types (Additional file 1: Fig. S39), demonstrating its
superiority and robustness 1n prognosticating patient survival. Calibration plots further
confirmed that MAASig was well-calibrated across 1-, 3-, and 5-year time horizons in all
cancer types (Additional file 1: Fig. S40). Decision curve analyses consistently
demonstrated that MAASig provided a higher net clinical benefit than * treating’
everyone or no one across a wide range of threshold probabilities [113] (Additional file 1:
Fig. S41).

To further examine the clinical significance, we focused on ccRCC [114], which exhibits
substantial intra-tumor heterogeneity that contributes to the drug-tolerance [115]. MAAS

accurately identified seven distinct cell subpopulations that were previously overlooked by
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traditional methods (Fig. 5d-f and Additional file 1: Fig. S42). To explore potential molecular
mechanisms, we examined transcription factors binding motifs in DACRs and inferred TF
binding motif activity by estimating the gain or loss of chromatin accessibility (Additional file 1:
Supplementary Methods). Our analysis revealed significant variability in TF activity across
clusters (Fig. 5g). For example, NR2C! activity was elevated in cluster 7, while CTCF activity
increased in cluster 6. Additionally, we assessed the correlation between the cluster-specific gene
modules, identified by weighted correlation network analysis (WGCNA) [116], and
immunotherapeutic sensitivity (Additional file 1: Supplementary Methods). We found that
cluster 7, represented by gene module 4, demonstrated the highest resistance to anti-PD-1
blockade therapy with nivolumab (Fig. 5h-j; Additional file 1: Figs. S43 and S44). This
finding was further validated using multiple immunotherapy response metrics, including
tumor immune dysfunction and exclusion (TIDE) score [117], MHC-I association immunoscore
(MIAS) [118], 18-gene gene expression profile (GEP) [119], and PD-1 gene activity [120] (Fig.
5k-n). In summary, the MAAS-derived signature shows strong prognostic value and robustness in

predicting patient survival across multiple cancer types.

Discussion

To our knowledge, MAAS is the first computational method for multimodal integration of
scATAC-seq data capable of identifying critical tumor cell subpopulations distinct from those
determined by traditional single-modality approaches, such as Copy-scAT [11] and epiAneufinder
[12]. MAAS addresses several key limitations of existing approaches. First, it incorporates
rigorous normalization and data denoising procedures to mitigate potential technical confounders

such as variable cell coverage. Our extensive benchmarking demonstrates that the subpopulations
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identified by MAAS represent genuine biological differences rather than technical artifacts.
Second, we found that MAAS provides higher accuracy in identifying tumor subpopulations
compared to other available methods. By integrating multimodal data, MAAS uncovers new tumor
cell subpopulations with significant biological and clinical relevance. The MAAS method is
fundamentally different from previous subpopulation prediction methods. Instead of relying solely
on single-modality features, which often overlook crucial layers of epigenomic information,
MAAS maximizes the extraction of informative features from scATAC-seq data. Additionally,
its self-expressive multimodal matrix factorization strategy enhances multimodal signals, enabling
a more robust classification of tumor subpopulations. Furthermore, MAAS is an explainable
multimodal integration method that quantifies the contribution of each modality to cell cluster
assignment. For example, the two pediatric ependymoma ceil subpopulations predicted by
MAAS were primarily driven by chromatin accessibility and SNVs, which contributed 69.68% and
66.49% more than CNVs, respectively (Fig. 3¢). The feasibility of the MAAS method is also
noteworthy, as it allows for the simultaneous examination of genetic mutations and epigenetic
variations without requiring additional single-cell assays. Despite the improved accuracy of
MAAS, it requires increased computational time. This limitation, however, may be alleviated
through the implementation of distributed or heuristic algorithms. Moreover, since MAAS was
specifically developed for tumor cells, it may not be suitable for normal or non-malignant cell
populations, where the underlying biological assumptions and patterns of heterogeneity may differ
substantially.

Importantly, beyond its methodological advances, MAAS provides novel biological
insights into tumor heterogeneity. For example, MAAS resolved a high-resolution glioma

subpopulation with strong TMZ resistance, a major clinical obstacle that contributes to
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therapeutic failure and tumor recurrence. The ability of MAAS to resolve such clinically
relevant subpopulations demonstrates that multimodal integration can go beyond cell
classification to uncover functional heterogeneity with direct therapeutic implications.
Moreover, genes highly expressed in this cluster, especially TPSTI, was experimentally
validated with TMZ resistance. Previous studies demonstrated that 7PST/ can mediate the
tyrosine sulfation of the chemokine receptor CXCR4, thereby enhancing CXCLI12/CXCR4-
dependent signaling and promoting tumor cell migration and invasiveness [121].
Moreover, recent work on 7PST2 revealed that tyrosine sulfation can modulate immune-
related receptors and affect the tumor cell response to interferon signaling and anti-PDI1
treatment [122]. By analogy, 7PSTI activity may also shape the tumor-immune
microenvironment and influence therapeutic outcomes beyond chemotherapy. These findings
highlight the potential of T7TPSTI as novel therapeutic targets, and suggest that
pharmacological inhibition of 7PST/ or interference with sulfation-dependent signaling
could help overcome TMZ resistance. Additionally, in pediatric ependymoma, where CNV
burdens are extremely low, MAAS successfully resolved a highly proliferative,
chemoresistant subpopulation and nominated everolimus and trametinib as potential
therapeutic agents. While a Phase II study reported that everolimus did not show
significant anti-tumor activity in this context [123], trametinib has demonstrated clinical
activity in pediatric CNS tumors, achieving disease control or partial responses in a subset
of patients with MAPK pathway activation [124]. These findings suggest that targeting the
aggressive subpopulation identified by MAAS with trametinib may offer a promising
therapeutic strategy. Notably, the cell-line models used in our study define TMZ resistance

primarily based on ICs, values. This threshold has been well established in the literature as
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a proxy for resistance [67], but we acknowledge that clinical resistance is a more
complex phenomenon that involves a variety of factors, such as aberrant signaling
pathways, autophagy, epigenetic modifications, and extracellular vesicle production [125].
In clinical settings, TMZ resistance is often defined by factors such as tumor recurrence
during treatment or progression-free survival time [126]. Therefore, while the cell-line
resistance models provide valuable insights into potential mechanisms of resistance, we
recommend that future studies validate these findings in clinical patient samples to
further confirm the relevance of these in vifro models to clinical resistance.

Motivated by the biological and therapeutic insights uncovered by MAAS, we further
investigated its potential clinical utility in predicting patient outcomes. Prognostic markers are
clinical measures that predict patient outcomes, such as recurrence or survival, and range from
simple anatomical features to complex molecular indicators reflecting underlying disease biology
[127]. However, most existing prognostic signatures have been derived from bulk-level data,
which obscure the profound intratumoral heterogeneity that exists among distinct tumor
subpopulations differing ii metabolic activity, survival signaling, and epigenetic regulation [2]. To
overcome this limitation, we integrated subpopulation-specific molecular features identified by
MAAS to construct a multimodal prognostic signature, MAASig. By explicitly incorporating
information from functionally distinct tumor subpopulations, MAASig captures biologically
relevant heterogeneity and exhibits significantly improved predictive performance compared with
conventional clinicopathological features and previously reported signatures. Beyond its
methodological importance, MAASig also enables more precise patient stratification, supports
risk-adapted treatment planning, and may guide the selection of targeted therapies for patients

most likely to benefit. Furthermore, MAASig could be integrated with existing clinical workflows
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as a complementary biomarker to enhance prognostic accuracy and inform personalized

therapeutic decision-making.

Conclusions

In summary, the MAAS method underscores the power of multimodal integration in dissecting
tumor heterogeneity using single-cell epigenomics data. MAAS will enable the broad application
of widely available single-cell sequencing data in oncology and other diseases, ultimately

revealing critical cell subpopulations for cell-targeted treatments.
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available from 10x Genomics [23]. The scATAC-seq dataset for the SNU601 cell line is available
from the NCBI database under the accession number PRINA674903 [19], and the single-cell
whole-genome sequencing data for the SNU601 cell line is available under the accession number
PRINA498809 [19]. The tumor samples of patients SU0O6 and SUOOS are available in the NCBI
database under the accession number PRINAS533341 [27]. The single-cell K562 dataset is
available under the accession number GSE243430 [18]. The bulk RNA-seq and clinical
information of pediatric ependymomia is available in the NCBI under the accession number
GSE42658 [28]. Gene expression and clinical features of patients from TCGA cohort are available
from the GDC portal (https://portal.gdc.cancer.gov/) [35]. Gene expression profiles of patients
from the two cohorts CGGA693 and CGGA325 are publicly available from the Chinese Glioma
Genome Atlas (https://www.cgga.org.cn/) [33]. Gene expression of experimentally determined
wild-type and TMZ-resistant glioma cells were obtained from the NCBI database under the
accession numbers GSE53014 [31] and GSE68029 [32]. Two bulk RNA-seq datasets of PPFE
were obtained from the NCBI database under the accession numbers GSE13267 [29] and
GSE66354 [30]. Bulk ATAC-seq data of B-cell lymphoma cell lines were obtained from the

NCBI database under the accession number GSE254913 [34]. Datasets used for clinical signature
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analysis from the NCBI database are available under the following accession numbers: (1)
ovarian cancer, GSE140082 [36], and GSE32062 [37]; (2) B-cell lymphoma, GSE181063
[38], GSE10846 [39], and GSE136971 [40]; (3) hepatocellular carcinoma, GSE116174 [41],
and GSE76427 [42]. Gene expression and clinical information of ccRCC patients were
retrieved from the E-MTAB-1980 [43] and CPTAC [44] cohorts, respectively. The open-
source MAAS is available from the following GitHub repository:

https://github.com/Larrycpan/MAAS [128].
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Fig. 1. The MAAS workflow. (A) MAAS takes as input a cell-by-peak matrix, a cell-by-CNV
matrix, and a cell-by-SNV matrix. Raw peak data are adjusted based on the copy number values
of the corresponding genomic regions. A robust principal component analysis (PCA) is applied to
the SNV data to reduce noise and generate a low-rank matrix. (B). Cell similarities for each omics
layer are calculated using Euclidean or Hamming distances. These similarities are integrated
through a modified matrix factorization strategy, enabling the inference of a latent space that
captures both genetic and epigenetic features through iterative updates. (C). Tumor cell
subpopulations are identified using the latent factors. The contribution of each modality to the
subpopulation is determined by the first-order norm of the coefficient matrix H. Consensus cell
distances are derived by calculating the Euclidean distance from the cell-by-latent factor matrix,

which is then used to reconstruct cell hierarchy represented by a minimum evolution tree.
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Fig. 2. Benchmarking analysis of tumor subpopulation identification. a. UMAP embedding
based on genetic features of three subpopulations. b. UMAP embedding based on MAAS latent
factors for the three identified subpopulations. ¢. Consistency of cell distribution across the three
subpopulations when comparing ground-truth to MAAS results. d. Consistency of cell

distributions across four subpopulations between the ground-truth and MAAS results. e. UMAP

50



embedding based on MAAS latent factors showing three ovarian cancer samples with different
metastatic status and histological grade, and MAAS-identified clusters with distinct resolution. f.
Accuracy of classifying tumor cell subpopulations across different computational methods.
Classification performance is evaluated based on the ability to distinguish tumor subpopulations
defined by metastatic status (primary vs. metastatic tumors, left panel) or pathological stages

(1, III and 1V, right panel).
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Fig. 3. A new pediatric ependymoma cell subpopulation with low CNV burden is

associated with multidrug resistance. a. UMAP visualization of the two tumor cell

subpopulations identified by MAAS. b. Significantly enriched cancer hallmarks in MAAS-

identified clusters 1 and 3, with thresholds of [logFC|> 0.1 and false discovery rate (FDR) < 0.05.

c¢. Contribution of each modality to subpopulation identification. d. Average proliferation and

migration scores for clusters 1 and 2. e. Cluster abundance between patients in grade II and

ITII. P-values were determined by the t-test. f. Distribution of SNVs (top) and differentially

accessible chromatin regions (bottom) across the three clusters. The heatmap in the bottom panel
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shows Z-scored normalized accessibility. The P-value for mutational frequency differences was
determined by the Kruskal-Wallis test. g. Pseudo-time ordering of tumor cell subpopulations
showing their developmental trajectories. h. Blomberg’s K values quantify evolutionary
signals based on MAAS and single modalities. i. Evolution tree of MAAS-identified clusters
depicting the temporal ordering of SNVs and DACRs. Edges represent Euclidean distances
computed in the MAAS-derived latent space, with a unit branch length of 0.07. j. Perturbation
scores for three first-line drugs, with lower scores indicating greater drug resistance. k. Gene
modules inferred from drug target co-expression networks using non-negative matrix
factorization. Low module scores indicate reduced predicted drug responsiveness. . Boxplots
comparing drug-target module scores between clusters 1 and 2. The center line represents the
median, and the lower and upper hinges represent the first and thiid quartiles. The whiskers extend
to the maximum and minimum values within 1.5 times the interquartile range from the hinge. P-
values were determined by the Wilcoxon rank-sum test. m. Distribution of predicted drug-sensitive
versus drug-resistant cells across MAAS-determined clusters, based on different bulk RNA-seq
reference datasets. Statistical significance was assessed using Fisher’s exact test. n. Heatmap
showing reduced expression of upregulated transcription factors and kinases in cluster 1

following treatment with approved targeted therapies.

53



0 MAAS Cluster 5' @ Shared hallmarks by MAAS clusters
i ® Shared hallmarks by peak clusters
Inﬂamma_'ory response . MAAS cluster-specific hallmarks H
Coagulation i Peak cluster-specific halimarks
\ (Zlucs;ﬁer Interferony response Peak Cluster _
Interferona response
c2 Inflammatory response
Bile acid metabolism "
« C3 i h Coagulation
o IL2-STATS signaling IL6-JAK-STAT3 signaling
%' Myogenesis Complement
s EMT IL2-STATS signaling
= UMAP—1 Hypoxia - Myogenesis
d T NOTCH signaling Apoptosis
0.047 Androgen response Interferony response
1.5 I UV response DN Interferona response
x DNA repair EMT
%1.0- Oxidative phosphorylation TNFA signaling via NFKB
£ MYC targets V1 Androgen response
2051 MYC targets V2 Hypoxia
Unfolded protein response UV response DN
0.0 G2M checkpoint Enrichment score
o X [
@YY‘ & Qe'b E2F targets -02-01 0 01 02
f : i g9
Normal R i 100! C2 enriched i C1 enriched ‘_g »
Euclidean distance — ) | _gagg c1
¢l X7 ' AEN VY
7+, 10- 8 SNVs g 5 I -§ (=} .
10194 DACRs Ty L & & ae
m DACR o 50 et 4 gﬁ cz
1 —
= CNV g G Z
W SNV T 25
4188 DACRs 19+, 3g+, 5a+ SNV| chr11:2700164:C>G @
1SNV
C3 o Peaks| . :
-4 0 4 147103250 147103750
” i log? (fold change) chr4 position (bp)
P-value = 2.28e-07
100 B Resistant Wild-type-like _____TMZ resistant
el . | |g e ;
Sensitive £ [oe} H
N i O gy 0 B .. é gl - o i
75 : 1 e BT ‘. - :
o 0.75 ] N T ol [8 mn :
8] =| @ |*
£ 50 *a 11 5 E § Sistie 11 *l;;
R =g 5 et
o < ] ]
: — S — :
H N~ H
3 0.25 ] :l T 1 .. % % case I «l:
i G 1135 1140 1145 1150 1295 1290 12.85 12,80
C1 €2 c3 log2(E-distance+1) E3c1 Edc2 EEc3 log2(E-distance)
k [ shControl+luc [0 shTPST1#1+luc [ shTPST1#1+TPST1-OF |
Il shControl+TPST1-CE [l ShTPST1#2+luc B shTPST1#2+TPST1-OE [ Gontrol  [E] TPST1-OE
T2 1 100
Flr 3 -
< =
(0.9 < =
= S 751 & 75
S e 0]
2 []
208 = &
o 50 2 509
3 = 3
0.3 i)
2 w2 254 S 251
5 r . 8
20
4 o 0
Pl 0 0 50 200

ks

R
O
SR
ORI

54

50
Concentration (uM)

200

Concentration (uM)



Fig. 4. High-resolution profiling reveals a TMZ-resistant glioma subpopulation. a. UMAP
embedding of the three tumor cell clusters determined by MAAS. b. Sankey plot showed the
correspondence between clusters identified by CNVs and those identified by MAAS. c.
Differentially enriched cancer hallmark signatures between clusters. The left panel displays
pathways enriched in MAAS clusters, while the right panel shows pathways enriched in tumor cell
clusters identified by chromatin accessibility. The heatmap colors represent enrichment scores,
with color shades indicating unique hallmarks detected by either MAAS or chromatin accessibility.
d. Blomberg’s K quantifies the evolution signal of tumor cell clusters by MAAS and
traditional single-modality methods. e. Hierarchy of MAAS-identified clusters, depicting the
timing of CNVs, SNVs, and DACRs. Edges represent Euclidean distances computed in the
MAAS-derived latent space, with a unit branch length of 1.00. {. Volcano plot showing DACRs
(FDR < 0.05 and |logFC| > 0.5) between MAAS-identified clusters 1 and 2. Regions containing
the six driver mutations specific to cluster | are highlighted. g. scATAC-seq peak tracks for
accessible regions in clusters 1 and 2, with noncoding SNVs marked by dark red dots. h.
Distribution of predicted temozolomide (TMZ)-sensitive and resistant cells across MAAS-
identified clusters. The P-value, calculated by a chi-square test, is shown, along with the accuracy
of predictions measured by the area under the curve (AUC). The dotted line represents the baseline
of 0.5. Asterisks indicate significance based on permutations. i. Energy distance (E-distance)
between the three MAAS clusters and TMZ-sensitive and resistant cells across three cell lines.
The center line of the boxplot indicates the median, the box limits show the first and third quartiles,
and the whiskers extend to the maximum and minimum values within 1.5 times the interquartile
range from the hinge. The P-value was determined by a two-tailed Wilcoxon rank-sum test. j.

TPSTI gene expression measured by qPCR. k. Effect of T7PSTI knockdown and
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overexpression on TMZ resistance across different concentrations. The viability of cells
was measured after treatment with various concentrations of TMZ (0, 50, and 200 puM)
in different experimental groups. Groups include: shControl+luc (shRNA non-targeting and
luciferase), sh7PSTI#1+luc and sh7PSTI#2+luc (TPSTI knockdown with luciferase
control), and shControl+7PSTI-OE, shTPSTI#1+TPSTI-OE, and shTPSTI#2+TPSTI-OE
(TPSTI1 overexpression). Viability is shown as the mean + standard error of the mean
across biological replicates (n = 3). Statistical significance was assessed using a Student’s
t-test. 1. Cell viability of TPSTI! and overexpression between control and TMZ-treatment
groups. P-values were determined by Student’s t-test. ns: no significance, *P-values <

0.05, **P-values < 0.01, ***P-values < 0.001, ****P-values < 0.0001.
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Fig. 5. A MAAS-derived clinical signature accurately predict prognosis across multiple
cancer types. a. Schematic illustration of the workflow for generating the MAAS-derived

multimodal signature (MAASig) (see details in the Supplementary Materials and Methods). b.
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Average concordance index (C-index) of traditional clinical features and MAASig for survival
prediction across multiple cancer types, including glioblastoma, ovarian cancer (OC), B-cell
lymphoma, hepatocellular carcinoma (HCC), and clear cell renal cell carcinoma (ccRCC). c.
Kaplan—Meier survival curves demonstrating the clinical relevance of MAASig in a pan-cancer
meta-cohort. Datasets for each cancer type were combined into a single cohort, with MAASig
stratification determined at the median value. Statistical P-values were calculated using a two-
tailed log-rank test. d. UMAP embedding of the six tumor cell subpopulations identified by
MAAS. e. Sankey plot illustrating the clusters identified by CNVs and those identified by
MAAS. f. Cancer hallmark pathways enriched in each cluster. g. Heatmap of chromVAR bias-
corrected deviation scores for the differential TF motifs across clusters. The top bar indicates
cluster-specific TF motifs with examples of sequence logos for tlie top TF motifs displayed on the
right side of the plot. h-j. Spearman correlations: between eigengene-based connectivity (kME) of
all modules (h), between module 4 eigengerie and kME (i), and between log fold change (logFC)
of differentially expressed genes and anti-PD-1 response versus non-response in patients (j).
Shaded areas represent 95% confidence intervals. k-n. Degree of immunotherapeutic response
measured by various metrics: tumor immune dysfunction (k) and exclusion (TIDE) scores, MHC
I association immunoscore (MIAS) (1), 18-gene expression profiles (GEP) (m), and PDCD1
(PD-1) (m) gene activity. The center line in each box plot represents the median, the lower and
upper hinges represent the first and third quartiles, and the whiskers extend to the maximum and
minimum values within 1.5 times the interquartile range from the hinge. P-values were determined
using the Wilcoxon rank-sum test. ns: no significance, *P-values < 0.05, **P-values < 0.01,

***P_yvalues < 0.001, ****P-yalues < 0.0001.
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