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Abstract

Background

Accurately identifying functionally distinct tumor cell subpopulations remains a critical 

challenge in cancer research. While single-cell epigenomics assays provide powerful insights 

into tumor heterogeneity beyond gene expression, computational limitations have hindered their 

application. 

Methods

We introduce Multimodal-based Analysis of scATAC-Seq data (MAAS), a method that 

integrates chromatin accessibility, copy number variations (CNVs), and single-nucleotide 

variants (SNVs) to identify functional tumor cell subpopulations. MAAS employs a self-

expressive multimodal matrix factorization approach with rigorous coverage normalization and 

data denoising. We applied MAAS to simulated datasets and multiple real-world tumor 

scATAC-seq datasets, including pediatric ependymoma, B-cell lymphoma, and 

glioblastoma, and benchmarked its performance against existing integration methods. 

Functional relevance of subpopulation-specific genes was experimentally validated using 

gene knockdown and overexpression assays. Furthermore, we constructed subpopulation-

specific gene regulatory networks and developed a prognostic signature from the key 

regulatory genes.

Results

MAAS demonstrated superior accuracy in detecting clinically relevant subpopulations, 

particularly in tumors with limited CNV heterogeneity, such as pediatric ependymoma and B-cell 

lymphoma. In glioblastoma, MAAS uncovered a previously unrecognized subpopulation with 

temozolomide resistance and further experimentally validated the effects of its signature genes 
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through gene knockdown and overexpression. The MAAS-derived prognostic signature, 

MAASig, outperformed traditional clinicopathologic features across multiple cancer types when 

applied to independent validation cohorts. 

Conclusions

By integrating multimodal information from scATAC-seq data, MAAS provides the robust 

identification of functionally distinct tumor cell subpopulations, facilitating the discovery of 

potential therapeutic targets.

Keywords: scATAC; multimodal analysis; tumor heterogeneity; drug resistance; prognostic 

signature
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Background

Cancer cells undergo various genetic and epigenetic changes that drive the formation of distinct 

subpopulations during tumor progression [1, 2]. Identifying  these  critical  subpopulations 

accurately is essential for developing effective treatments [2]. Single-cell sequencing technologies 

have revolutionized our understanding of tumor cellular composition compared to traditional bulk 

analyses.  Among these, single-cell  RNA sequencing (scRNA-seq)  is  widely  used  to  profile 

clinical  phenotype-associated  subpopulations [3-5]. Although scRNA-seq  can  distinguish 

malignant  from  non-malignant  subpopulations  and  examine  cell  heterogeneity  by  analyzing 

expression-derived genetic mutations such as  copy number variations [6, 7], it often fails to 

identify the clinically relevant subpopulations that are not solely linked to gene expression [8]. This 

limitation  arises because scRNA-seq  primarily  captures  transcriptional  activity  and  often 

overlooks critical epigenetic and regulatory changes [9, 10].

Single-cell  epigenomics  assays,  such  as  single-cell  assay  for  transposase-accessible 

chromatin using sequencing (scATAC-seq), enable robust profiling of cell subpopulations beyond 

gene expression and can reveal distinct regulatory information that controls gene expression. 

However,  applying  scATAC-seq  to  study  tumor  subpopulations  has  been  computationally 

challenging  due to inherent data sparsity, technical noise, and variable cell-to-cell sequencing 

depth  that  can  confound  clustering  analyses.  Traditional  methods, such  as  Copy-scAT and 

epiAneufinder, mainly rely on CNVs [11-13], to determine the genetic heterogeneity of tumor 

cells. Despite these advances, CNV analysis alone often fails to detect clinically relevant tumor 

subpopulations. For example, melanoma subpopulations with varying anti-PD-1 responses are 

better characterized  by  their  distinct  point mutation  profiles  rather than  CNV  events [7]. 

Furthermore, the interplay between genetic and  epigenetic changes enables subpopulations to 
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circumvent therapeutic barriers, promoting cancer progression [14, 15], thus highlighting the 

need to integrate these features. Unfortunately, existing methods fail to fully utilize the spectrum 

of epigenetic and genetic information available from scATAC-seq data. These methods are also 

limited in delineating tumor cell subpopulations with low CNV heterogeneity, such as those found 

in hematopoietic and pediatric cancers [16]. Additionally, scATAC-seq data often exhibit inherent 

high sparsity and technical noise, posing significant challenges in determining informative features 

for dissecting tumor cell subpopulations [17].

Here,  we  presented a novel  computational  method called  Multimodal-based Analysis  of 

scATAC-Seq data (MAAS) that accurately identifies tumor cell subpopulations and infers their 

evolutionary lineages by integrating informative multimodal features, including CNVs, single-

nucleotide  variants (SNVs),  and  chromatin  accessibility  data.  To  overcome  the  technical 

challenges of scATAC-seq analysis, MAAS implemented rigorous normalization procedures to 

correct for variable cell coverage and employed robust denoising strategies for sparse SNV data. 

Our approach quantitatively assesses the contribution of each data modality,  allowing for the 

identification of subpopulations driven predominantly by one modality, particularly in tumors 

with limited CNV heterogeneity. MAAS  outperformed other state-of-the-art methods on both 

simulated and real datasets. In pediatric ependymoma, a cancer with low CNV heterogeneity, 

MAAS identified a progressive tumor cell subpopulation associated with  multidrug resistance. 

When applied  to  a  glioma tumor,  MAAS uncovered  a  previously overlooked subpopulation 

resistant to temozolomide, which was subsequently experimentally validated. Furthermore, we 

developed a MAAS-derived multimodal clinical  signature by integrating subpopulation-specific 

gene regulatory networks (GRNs), which provided a more accurate prognostic prediction than 

traditional clinicopathologic characteristics and existing signatures across multiple cancer types. 
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In conclusion, MAAS is a reliable and robust tool for identifying clinically relevant tumor cell 

subpopulations,  facilitating the discovery of new disease mechanisms and  enhances tumor 

diagnosis and therapeutic strategies.

Methods

Datasets used in this study

All the data in this study are publicly available. The scATAC-seq datasets used for 

MAAS analysis comprised the K562 cell line (n = 2 from GSE243430) [18], the 

SNU601 gastric cancer cell (n = 1 from PRJNA674903) [19], two ovarian cancer (OC) 

cohorts (n = 3 from phs002340.v1.p1 [20] and n = 10 from GSE247982 respectively 

[21]), pediatric posterior fossa ependymoma (PPFE) (n = 4 from GSE206579) [22], B-

cell lymphoma (n = 1) [23], adult glioblastoma (GBM) (n = 4 from GSE139136) [24], 

pediatric GBM (n = 3 from GSE163655) [24], hepatocellular carcinoma (HCC) (n = 13 

from GSE227265)  [25], clear cell renal cell carcinoma (ccRCC) (n = 19 from 

GSE207493) [26]. In addition, an scATAC-seq dataset coupled with whole-exome 

sequencing data (n = 2 from PRJNA533341) was used for validation of CNV calling 

[27].

Bulk RNA-seq datasets used for drug resistance analysis included PPFE (GSE42658, 

n = 14; [28]; GSE13267, n = 17 [29]; GSE66354, n = 55 [30]) and GBM (GSE53014, 

n = 12 [31]; GSE68029, n = 12 [32]; CGGA693, n = 289; and CGGA325, n = 139 

[33]). Bulk ATAC-seq data for B-cell lymphoma with treatment information were 

obtained from GSE254913 (n = 8) [34].
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Bulk RNA-seq datasets for signature analysis included GBM (The Cancer Genome 

Atlas (TCGA), n = 153 [35]; CGGA [33]), OC (TCGA, n = 357 [35]; GSE140082, n = 

380 [36]; GSE32062, n = 270 [37]), B-cell lymphoma (GSE181063, n = 1310 [38]; 

GSE10846, n = 420 [39]; GSE136971, n = 448 [40]), hepatocellular carcinoma (TCGA, n 

= 341 [35]; GSE116174, n = 64 [41]; GSE76427, n = 115 [42]), clear cell renal cell 

carcinoma (TCGA, n = 504 [35]; E-MTAB-1980, n = 92 [43]; CPTAC, n = 53 [44]). In 

all datasets, n denotes the number of samples.

scATAC-seq data analysis

We used the SRA Toolkit (v2.10.9) [45] to obtain FASTQ files of raw sequencing data, which 

were then aligned to the GRCh38 reference genome using 10× Genomics Cell Ranger ATAC 

(v2.1.0) software [46] with default parameters. We then used the Signac [47] package to obtain a 

cell-by-peak matrix. High-quality cells were retained based on transcription start site enrichment 

(> 3), the number of unique fragments (> 1000), percentage of reads in peaks (> 15%), blacklist 

ratio (< 5%) and nucleosome signal (< 4). To account for varying coverage across cells,  we 

performed term frequency-inverse document frequency (TF-IDF) normalization, applying a log-

transformation to both the TF and IDF elements [48]: 

Normalized  peak = log (TF )× log ( IDF )= log ⁡(
C ij

F j

)× log ⁡( N
ni

) (1)

where C ij is the total number of counts for peak i in cell j and F j is the total number of counts for 

cell j. For the IDF term, N denotes the total number of cells and ni represents the total number of 

counts for peak i across all cells. To correct batch effects across samples, we performed ComBat 

[49] analysis using the R package sva [50]. In addition, a cell-by-gene score matrix used for 

functional enrichment analysis was obtained using  the GeneActivity function implemented in 
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Signac. Differentially accessible chromatin regions (DACRs) were identified using the 

FindAllMarkers function by regressing out  the library size. Details of tumor cell identification 

were provided in the Additional file 1: Supplementary Methods. The quality control metrics 

of each dataset analyzed in this study were summarized in Additional file 1: Table S1.

Mutation calling

We benchmarked two CNV callers (epiAneufinder [12] and Copy-scAT [11]) for scATAC-seq 

data. Based on the benchmarking results, we selected  epiAneufinder [12] for MAAS analysis 

(Additional file 1: Figs. S1 and S2). Additionally, we employed SComatic [51] for somatic SNV 

calling and evaluated seven tools for SNV denoising (Additional file 1: Figs. S3-S6). Based on the 

results from the SNV denoising benchmark, we selected CBM [52] as the preferred method for this 

study. Further details  are provided  in  Additional  file  1: Supplementary Notes 1-2 and 

Methods.  

Cell affinity estimation in each feature layer

We first corrected the chromatin accessibility profile according to the prior knowledge that copy 

number gain leads to an aberrant high peak density and vice versa.

~x pj ={x pj - ξ ×(r pε ( j ) - 2)× x pj ,  if  j∩ R pε ( j )
+ ≠∅  and  x pj ≥  2 ;

x pj +ξ ×(2- r pε ( j ))× x pj ,  if  j∩ R pε ( j )
- ≠∅  and  x pj >  0 ;

x pj ,  otherwise

(2)

where x pj and ~x pj indicate the raw and adjusted peaks j of cell p, respectively, and r pε ( j ) indicates 

the observed copy numbers containing the region j. The hyperparameter ξ indicates the prior 

regarding the effect of copy number on chromatin accessibility, with values ranging from 0 
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to 1 (default: 0.5). We demonstrated the necessity of this correction, as well as its 

robust performance across different values of ξ (Additional file 1: Figs. S7-S9). A higher 

value  of ξ indicates a  stronger  assumed  influence of copy number on chromatin 

accessibility levels. Specifically, when ξ is set to 1, it  suggests that increased chromatin 

accessibility is entirely dependent on copy numbers. Conversely, lower values of ξ reflect a 

weaker or more nuanced relationship between CNVs and chromatin accessibility. This parameter 

facilitates flexible modeling of the  extent to which CNVs are presumed to drive changes in 

chromatin accessibility. R pε ( j )
+  and R pε ( j )

-
 represent the copy number gain and loss region of cell 

p,  respectively. Then, we calculated the affinity between cell  p and  q (default:  cosine). The 

Hamming distance was used to estimate the cell similarity based on CNVs or SNVs.

MAAS structure

We  employed a modified  non-negative  matrix  factorization  to  jointly  integrate  multiple 

modalities  for  dimension reduction  of  affinity  matrices  A( i ).  The  model  aimed to  identify a 

consensus low-dimensional space  W  that simultaneously encodes different layers, along with 

diagonal matrices H ( i ) to representing the coefficients of latent factors to be projected into this 

space:

A( i )~ A( i )W H ( i )W T (3)

We noted that A( i ) serve as self-expressive terms, indicating that our multimodal integration 

method can  learn  and  maintain  local  structure  for  subspace  clustering (Additional file 1: 

Supplementary Note 3).  Given  the  input  terms,  our  model  minimizes  the  loss  function  as 

follows:
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Q (W ,  H ( i );  A( i ))=
1
2
∑

i

‖A( i ) - A( i )W H ( i )W T‖F

2

(4)

Multiplicative update rules were utilized through the stochastic gradient descent as follows:

W ←W - φ∇ W Q ( A( i ) ,  W ,  H ( i ))

H ( i )← H ( i ) - η∇ H ( i )Q ( A( i ) ,  W ,  H ( i ))
(5)

where

∇ W Q =-∑
i

[ A( i )( A( i ) - A( i )W H ( i )W T )W H ( i )+( A( i ) -W H ( i )W T A( i )) A( i )W H ( i )]

∇ H ( i )Q =- [ Z0
( i ) ]T ( A( i ) - Z0

( i ) H ( i )W T )W ,  where  Z0
( i )= A( i )W

(6)

Therefore, we could obtain that

W - φ∇ W Q ( A( i ) ,  W ,  H ( i ))=W +2φ∑
i

[ A( i ) ]2W H ( i ) - φ∑
i

[ A( i )( A( i )W H ( i )W T )+(W H ( i )W T A( i )) A( i ) ]W H ( i )

H ( i ) - η∇ H ( i )Q ( A( i ) ,  W ,  H ( i ))= H ( i )+η [ Z0
( i ) ]T W - η [ Z0

( i ) ]T (Z0
( i ) H ( i )W T )W

(7)

Based on the derivatives, the learning rate for the rule was denoted as

φ =
W

∑
i

[ A( i )( A( i )W H ( i )W T )+(W H ( i )W T A( i )) A( i ) ]W H ( i )

η=
H ( i )

[ Z0
( i ) ]T (Z0

( i ) H ( i )W T )W

(8)

A block coordinate descent scheme was implemented, in which we optimized based on only 

one rule and kept others fixed. Finally, we implemented the decompositions using hand-solved 

equations

W ←2×W ⨀
∑

i

[ A( i ) ]2W H ( i )

∑
i

[ A( i )( A( i )W H ( i )W T )+(W H ( i )W T A( i )) A( i ) ]W H ( i )

H ( i )← H ( i ) ⨀
[ Z0

( i ) ]T A( i )W

[ Z0
( i ) ]T (Z0

( i ) H ( i )W T )W

(9)
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The gradient descent terminated when the condition  
Qi

Qi -1 -Qi

<10- 6
 could be met (Additional 

file 1: Fig. S10). The optimized process  of  our  model  is provided in  Additional file 1: 

Supplementary  Note 4. Tumor cell subpopulations were identified by applying K-means 

clustering to the latent factor matrix W. To determine the optimal number of clusters, 

we systematically evaluated a range of cluster numbers (from k = 2 to k = 10) and the 

dimensions of W (from 2 to 7), and calculated four widely used clustering validity indices 

[53-56]: the silhouette index, Davies-Bouldin index, Dunn validity index, and Calinski-

Harabasz index. These metrics respectively assess intra-cluster cohesion, inter-cluster 

separation, cluster compactness, and overall partition quality. To integrate these into a 

single measurement, we proposed a composite score termed the S-score (Additional file 1: 

Supplementary Methods), which normalizes and combines the four indices into a weighted 

sum. The cluster number with the highest S-score was selected as the optimal resolution, 

and the corresponding K-means partition was used to define tumor cell subpopulations. The 

S-scores of each clustering assignment based on MAAS embedding across datasets were 

summarized in Additional file 1: Fig. S11.

Contribution of modalities

We quantified the contribution of each modality by calculating the normalized trace, defined as 

the sum of diagonal values of the corresponding matrix. The contribution of modality i is given 

by 

Contribution  of  modality  i  =  
trace ( H ( i ))

∑
t

trace ( H ( t ))
=

‖H ( i )‖1

∑
t

‖H ( t )‖1
(10)
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where trace ( ∙) represents the sum of the diagonal elements, and ‖∙‖1 denotes the L1 norm. A larger 

trace value indicates a higher weight or greater influence of the corresponding modality in cluster 

assignment. Namely, this metric allows for a quantitative comparison of the relative importance 

of different modalities in predicting tumor subpopulations.

Construction of cell hierarchy

The consensus cell-affinity matrix was initially computed based on W . Alternatively, it could be 

derived from the features of individual modalities. The evolution tree was reconstructed using 

the minimum evolution algorithm [57], as implemented in the R package ape [58]. To visualize 

the resulting tree, we employed the ggtree [59] package, utilizing the “ape” layout.

Tumor cell identification

We employed a comprehensive approach to identify tumor cells based on multiple criteria. For 

each dataset, tumor cells were identified using a combination of: 1) CNV profiles characteristic of 

the cancer type, 2) marker gene accessibility specific to cancer cells, 3) known tumor-specific 

epigenetic signatures, and 4) clustering patterns consistent with malignant populations. For the 

glioma dataset specifically, tumor cells were identified based on characteristic CNVs including 

chromosome 7 gain and chromosome 10 loss, which are hallmark alterations in glioblastoma.

Multidrug sensitivity of PPFE cell subpopulations

We used scRank [60] to calculate perturbation scores of each drug, including etoposide, 

vinblastine and vincristine. Edges with weight lower than  0.9 were removed. To identify gene 

modules across samples, we used the NMF implemented in the R package GeneNMF [61] by 
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setting the number target NMF components for each sample from 4 to 9, and 10 target meta-

modules were determined by hierarchical clustering with minimum confidence of 0.1. We then 

estimated drug-target module activity using the AddModuleScore function in the Seurat package 

[62]. Additionally,  we  used oncoPredict [63] to calculate the half  maximal inhibitory 

concentration (IC50) of ependymoma patients from the GSE13267 [29] and GSE66354 [64] 

cohorts.

TMZ response of GBM tumor cell subpopulations

We first used oncoPredict [63] to predict IC50 of GBM patients in the CGGA693, CGGA325 and 

TCGA cohorts, respectively, by performing linear regression. Specifically, drug response data 

from GDSC2 [65] were utilized as the training set, while the three bulk RNA-seq datasets 

served as the test set. Genes with a median absolute deviation less than 0.15 were excluded from 

the regression analysis. We then used the calcPhenotype function to predict IC50 for each patient. 

The parameters  were  set  as  follows:  powerTransformPhenotype  set  to  FALSE, 

removeLowVaryGenes  set  to  0.2,  removeLowVaringGenesFrom specified  as  ‘rawData’,  and 

minNumSamples set to 10. Patients were subsequently stratified into sensitive and resistant groups 

based on the median cutoff of IC50 score. Next, we applied Scissor [3] to predict the therapeutic 

phenotype of each cell using binomial regression model. Prediction performance was estimated 

using the reliability.test function with 1000 permutation times and 10-fold cross-validation. 

Additionally, we calculated the E-distance between tumor cell clusters and experimentally 

determined TMZ-sensitive and resistant subpopulations using the edist function from the R package 

Rfast [66], based on gene activity inferred from scATAC-seq data. To reduce the impact of sample 
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size on distance computation, we randomly selected 100 cells from each cluster and repeated this 

procedure 500 times.

Identification of cluster 2-specific genes for experimental validation

We screened cluster 2-specific genes for experimental validation of TMZ resistance based 

on the following steps: Firstly, we identified genes with significant increasing expression in 

TMZ-resistant GBM cell lines [67] by GEO2R [68], including LNZ308 and U251, with 

the thresholds of logFC > 0.25 and adjusted P-value < 0.1. The IC50 values of the 

resistant GBM subpopulations showed > 2-fold increase in TMZ-resistance compared to 

the parental cell lines [67]. Then, we selected genes with prognostic significance by both 

log-rank test and univariate Cox regression with the thresholds of HR > 1 and P-value < 

0.05. Finally, we examined the overlapped TMZ-resistance relevant genes, survival-related 

genes and cluster 2-specific genes.

Cell culture

HEK293T, U-87 MG cells (Cell bank of Chinese Academy of Sciences, Shanghai), and U-251 

MG cells (a generous gift from Dr. Tengfei Guo) were cultured in high-glucose DMEM containing 

10% FBS (VISTECH) and 1% penicillin/streptomycin (Thermo Fisher Scientific). All cell lines 

were routinely tested and confirmed to be free of mycoplasma contamination was detected 

during cell culture.

RNA preparation and quantitative RT-PCR

Total RNA was extracted with Quick-RNA™ Miniprep Kit (Zymo Research), followed by cDNA 
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synthesis with a GoScript™ Reverse Transcription System (Promega). Quantitative RT-qPCR was 

performed in a Real-Time PCR system (Bio-Rad) using SYBR Green Supermix (CWBIO). The 

primer sequences used are listed in Additional file 1: Table S2.

Lentivirus preparation and titration

To  construct  lentiviral  vectors  expressing  shRNA targeting  TPST1,  RFTN1  and  ADAMTS1, 

corresponding shRNA oligonucleotides (Additional file 1: Table S3) were inserted into the 

cloning  site  of  pLKO.1  (Addgene,  #  10878)  following  the  manufacturer’s  instructions.  All 

constructs  were  validated  by  Sanger  sequencing.  Lentivirus  was  packaged  as  previously 

described [69]. Briefly, viruses were harvested from HEK293T cells transfected with the indicated 

plasmid and the packaging plasmids pMD2G and psPAX2 using PEI MAX transfection reagents 

(Polysciences), concentrated and titrated. For virus titration, viruses were tested by counting the 

U-87  MG  or  U251  MG  cell  clones  after  3 μg/mL  puromycin  (Beyotime  Biotechnology) 

selection.

Cell proliferation assay

For  cell  proliferation  assay,  U-87  MG  cells  were  infected  with  indicated  shRNA  targeting 

TPST1,  RFTN1, and  ADAMTS1. After 3 μg/mL puromycin selection, U-87 MG cells were re-

plated 1000 cells per well on 96-well plates. Cell viability was determined using Cell Counting  

Kit-8 assays (CCK-8) by measuring the absorbance at 450 nm using a microplate reader (BioTek), 

following the manufacturer’s instructions (Beyotime Biotechnology). 

TMZ chemosensitivity assay
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As previously described [70]{Zou, 2021 #433}, U-87 MG and U251 MG cells were infected with 

indicated  shRNA  or  TPST1  overexpression  vector,  after  3 μg/mL puromycin selection. 

Subsequently, the surviving cells were allowed to recover in fresh growth medium for 2 

days. The infected cells were re-plated 5000 cells per well on 96-well plates. Following 24 hours 

of incubation, the medium was replaced with fresh medium containing 50 μM or 200 μM TMZ. 

Cells were then cultured for another 24 hours and cell viability was assessed using the CCK-8 

(Beyotime Biotechnology) according to the manufacturer’s protocol. Absorbance at 450 nm was 

measured using a BioTek microplate reader to determine viability.

Statistical analysis

The Wilcoxon rank-sum test [71] or Student’s t-test [72] (sample size < 10) were used 

to compare quantitative measures between groups of interest. Comparisons of relative 

frequencies were performed by Fisher’s exact test [73]. In addition, we performed several 

survival analyses to investigate the prognostic relevance of tumor subpopulation-specific genes. 

Samples were stratified into two groups based on the median cutoff. Survival curves of the two 

patient groups were evaluated using the Kaplan-Meier approach [74]. The statistical significance 

was calculated using a two-tailed log-rank test. We used the survival R package [75] for Cox 

analysis and the two-tailed Wald test [76]. Time-dependent AUC and C-index were calculated 

using the R packages survivalROC [77] and survival [75], respectively.

Results

MAAS achieved superior accuracy in predicting tumor cell subpopulations
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To delineate  cellular  heterogeneity  in  tumors,  we  developed  an  algorithm called  MAAS to 

accurately  identify  tumor  cell subpopulations  by  integrating  genetic  and  epigenetic  features 

derived  from  scATAC-seq  data  (Fig.  1a). Specifically, MAAS  infers a  consensus  low-

dimensional latent factor that encodes multiple modality features, including CNVs, SNVs and 

chromatin accessibility, which are subsequently used for tumor cell subpopulation identification. 

To mitigate potential biases from CNVs, which often confound the quantification of chromatin 

accessibility [78], MAAS incorporates a weighted correction strategy to adjust for this effect. 

Additionally, given the sparsity and noise inherent in SNVs derived from scATAC-seq data, 

MAAS  utilized  a  parametric algorithm CBM [52], which outperforms other denoising 

algorithms in correcting false discoveries according to our benchmarking analysis, thus 

enabling accurate profiling of somatic mutations in individual cells (Fig. 1a; Additional file 1: 

Figs.  S4-S6 and Supplementary  Note 2). Cell similarities  were then estimated using cosine 

distance for chromatin accessibility and hamming distance for CNV and SNV. MAAS integrated 

these three cell-by-cell matrices A( i ) (i = 1, 2, 3) using multimodal non-negative matrix 

factorization, optimized by a multiplication update algorithm, generating a latent variable W 

and  three diagonal  coefficient  matrices H ( i ) upon  convergence (Fig.  1b). Notably, MAAS 

leverages correlation matrices A( i ) as self-expressions to further enhance clustering accuracy [79], 

and the contribution of each modality is estimated by the trace of H ( i ) (Fig. 1c). Finally, 

tumor cells are classified into subpopulations using K-means clustering, and a minimum evolution 

tree depicting subpopulation relationships is constructed (Fig. 1c).

To systematically evaluate the performance of MAAS, we conducted a simulation analysis 

to  determine its ability to accurately deconvolute labeled tumor cell subpopulations. We first 

generated three simulated cell clusters as ground truth datasets, where clusters 1 and 2  shared 
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different  genetic  features  compared to cluster  3,  while also exhibiting distinct  chromatin 

accessibility profiles (Fig.  2a).  MAAS successfully separated clusters  1 and 2, which were 

indistinguishable  using single-modality  approaches (Fig.  2a and b).  Specifically,  MAAS 

identified 92.71%, 94.85%, and 95.12% of the three clusters, respectively (Fig. 2c). When tested 

on four  simulated cell  clusters,  MAAS accurately identified 93.96%, 95.17%, 98.48% and 

56.03% of cells in clusters 1 to 4, respectively (Additional file 1: Fig. S12a-c).

To further evaluate the robustness of the MAAS method, we compared it with other  multi-

omics integration and clustering tools, including uniform manifold approximation and projection 

(UMAP) [80], intNMF [81], PintNMF [82], SNF [83], LRACluster [84], MCIA [85],  MOFA 

[86],  multiVI [87],  MOJITOO [88], SEACells [89], scOpen [90] and CoGAPS [91] 

(Additional file 1: Supplementary Methods). We began by randomizing the tumor cell clusters 

and evaluated the performance using three metrics: the adjusted Rand index (ARI),  normalized 

mutual information (NMI), and V-measure. MAAS significantly outperformed UMAP multimodal 

clustering (Additional file 1: Fig. S12d), other integration methods, and the single-modality 

method CBM [52] with the median ARI, NMI, and V-measure values of 0.912, 0.833, and 0.849, 

respectively (Fig. 2d). Additionally, we varied the number of cells  per tumor cluster for each 

simulation and found that  MAAS consistently achieved the highest ARI, NMI, and V-measure 

scores, and cell number had a minimal effect on MAAS performance (Additional file 1: Figs. 

S12e and S13). Further examining the impact of the cluster number on clustering performance 

demonstrated that MAAS outperformed alternative methods across a diverse range of cluster sizes 

(Additional file 1: Fig.  S12e and f). We also evaluated clustering performance  under different 

levels of data sparsity, ranging from 10% to 90%, and found MAAS consistently showed superior 

performance, maintaining over 40% correct classification even at the 90% of data sparsity 
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(Additional file 1: Fig. S12g). To validate the accuracy of cell hierarchy reconstruction, 

we utilized mutual cluster information, a generalized Robinson-Foulds metric [92]. Notably, 

MAAS demonstrated superior performance across a range of subpopulation numbers, 

achieving a median mutual cluster information score of 0.811. In contrast, MOFA and 

intNMF showed markedly lower performance, with median scores of 0.719 and 0.595, 

respectively (Additional file 1: Fig. S14). Ablation analysis revealed that the simultaneous 

integration of chromatin accessibility, CNVs, and SNVs outperformed any pairwise 

combination or single-modality approach (Additional file 1: Fig. S15). Additionally, we 

evaluated the computational efficiency with respect to the total number of cells. We 

found that MAAS was more scalable than other matrix factorization-based methods such 

as CoGAPS and PintMF, ranging from ~1 hours and 0.4GB for 400 cells to ~44 hours and 

24 GB random access memory for 20,000 cells (Additional file 1: Fig. S16). 

Moreover,  we applied MAAS to a K562 dataset which generates both ATAC and 

whole-genome sequencing (WGS) data from the same cell [93]. The overall clustering 

results showed high consistency with those obtained using scATAC-seq data alone 

(Additional file 1: Fig. S17). We also compared  the  performance  of  MAAS with  CNV 

estimates derived from single-cell WGS (scWGS) data for gastric cancer [13]. MAAS accurately 

recovered the four tumor cell clusters characterized by the amplification of chromosomes 1 and 3 

and the  deletion of  chromosomes 4  and 18,  with  an average Pearson’ s correlation of 0.885 

(Additional file 1: Fig. S18).  To further access the  performance  of MAAS  in identifying 

clinically pertinent tumor cell subpopulations, we benchmarked MAAS in a real OC scATAC-

seq dataset from three tumors [94], the MAAS method effectively identified metastatic tumor cells 

from primary ones and accurately distinguished tumor cells at different pathological stages (Fig. 
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2g and h and Additional file 1: Fig. S19). In another OC dataset [95], MAAS accurately 

distinguished treated from non-treated cells, and revealed the heterogeneity within both 

treated and non-treated populations by identifying seven subpopulations characterized by 

distinct cluster-specific CNVs, such as gain of chromosomes 1q (C5), 12p (C6) and 19q 

(C1), as well as losses of chromosomes 8p (C6) and 9p (C5) (Additional file 1: Fig. 

S20). Overall, MAAS demonstrated superior performance in predicting tumor cell subpopulations 

compared to state-of-the-art methods.

MAAS detected clinically relevant tumor cell subpopulations with low CNVs

Many tumors, such as pediatric ependymoma, exhibit a low frequency of CNV events, often less 

than 10% [96], posing a great challenge for traditional methods in resolving tumor heterogeneity. 

To demonstrate the utility of the MAAS method in detecting subpopulations with low CNVs, we 

applied it to a scATAC-seq dataset of PPFE [97]. Our analysis revealed that MAAS accurately 

predicted the three major tumor cell subpopulations from 2,428 tumor cells (Additional file 1: 

Figs. S21 and S22), providing a clearer distinction between tumor cell clusters than the traditional 

methods (Fig. 3a-d and Additional file 1: Fig. S23). Functional enrichment analysis of the 

MAAS-predicted clusters showed that the MAAS not only recovered traditional hallmark cancer 

pathways but also identified an additional subset of cancer-related pathways enriched specifically 

in  clusters 1 and 3, such as DNA repair,   E2F  targets and  p53 pathway (Fig.  3b). This 

suggests  clusters 1 and 3, driven primarily  by chromatin accessibility and SNVs, represents 

functional subpopulations detected by MAAS (Fig. 3c). We then evaluated the proliferation and 

migration characteristics of each cluster using key proliferation signature genes [98, 99] (MKI67, 

PCNA, IGF1, ITGB2, PDGFC, JAG1, PHGDH, BCL2) and migration-related genes [100, 101] 
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(ARID5B and FAT1) (Additional file 1: Supplementary Methods). Cluster 1 exhibited 

significantly higher proliferation and migration scores than clusters 2 and 3 (Fig. 3d), indicating its 

strong metastatic potential  and highly  aggressive phenotype. Additionally, deconvolution 

analysis based on cluster-specific genes applied to a bulk RNA-seq pediatric ependymoma 

dataset  [102] revealed that patients with grade III tumors exhibited significantly higher 

abundance of cluster 1 compared to those with grade II tumors (Fig. 3e and Additional file 

1: Supplementary Methods). Given the highly differential chromatin accessibility profiles, 

we reasoned that these differences might reflect dynamic cellular state changes. 

Therefore, we used Monocle [103] to reconstruct developmental trajectories and observed two 

stepwise transitions: from cluster 2 to cluster 1 and cluster 2 to cluster 3 (Fig. 3g and Additional 

file 1: Supplementary Methods).  To further validate the dynamic changes between MAAS-

predicted clusters, we generated a minimum-evolution tree to depict the evolutionary process and 

found that cluster 3 had the highest mutation burden and chromatin accessibility, followed by 

cluster 1 (Fig. 3h and i; Additional file 1: Figs. S24-S25).

We  then investigated the response of  MAAS-determined clusters to several first-line 

chemotherapeutics, including etoposide, vinblastine and vincristine. First, we estimated the drug-

resistant subpopulation using scRank [104] (Methods) and observed that new cluster 1 exhibited 

lower perturbation scores than clusters 2 and 3 for each of the three drugs (Fig. 3j), suggesting 

that cluster 1 is more drug-tolerant. Additionally, cluster 1 had significantly lower scores for the 

drug-target gene modules of all three drugs, as determined by the activity of the drug-target gene 

module (Fig. 3k and l; Additional file 2: Data S1; Wilcoxon rank-sum test, all P-values < 0.05). 

We then performed deconvolution analysis  for pediatric ependymoma patients (Supplementary 

Methods) and found that drug-resistant samples contained an average of 85.71% more cluster 1 cells 
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(Fig.  3m). To identify potential targeted therapies for cluster 1, we screened data from the 

LINCS consortium [105] for compounds that selectively target cluster 1-specific transcription 

factors and kinases (Additional file 2: Data S2). This analysis identified two FDA-approved 

antineoplastic drugs, including everolimus and trametinib, that significantly  decreased  the 

expression  level  of  ERN2,  ESR1,  FLT1,  NR1H4, SHOX, SP110, and  ZNF365 (Fig.  3n). 

Collectively, our analyses demonstrate the MAAS’s effectiveness in detecting clinically relevant 

subpopulations with  low CNV heterogeneity but significantly differential therapeutic 

vulnerabilities.

Moreover, we applied MAAS to a 10x multiome dataset of B-cell lymphoma [23] 

characterized by minimal CNV burden [106]. This dataset contains paired scRNA-seq and 

scATAC-seq data measured for each cell. Comparative evaluation against conventional single-

modality methods, such as inferCNV [107] and CopyKAT [6] that are widely used to identify 

tumor cell subpopulations using gene expression-derived copy numbers, as well as dual-

modality combination of gene expression and chromatin accessibility (Additional file 1: 

Fig. S26), demonstrated MAAS’s superior capability in partitioning 2,077 malignant cells into 

nine molecularly distinct clusters (Additional file 1: Fig. S27), despite the limited CNV 

heterogeneity of this malignancy. Notably, although these clusters shared comparable 

transcriptional profiles, they displayed marked divergence in SNV and chromatin accessibility 

profiles (Additional file 1: Fig. S27b-e). Three lines of evidence substantiate their biological 

distinctness. First, genetic exclusive analysis revealed 181 cluster-specific SNVs distributed 

across the nine clusters (Additional file 1: Fig. S27b; chi-square test, FDR < 0.05), supporting 

their classification as genetically distinct subpopulations. Second, epigenetic precedence was 

evidenced by elevated chromatin accessibility of 3,077 transcriptionally stable genes in cluster 3 
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(Additional file 1: Fig. S27f-g), in line with established principles of epigenetic regulation 

mechanisms where chromatin accessibility changes often precedes gene expression changes 

[108]. Third, the clusters showed significantly functional differences, as we further calculated the 

E-distance between MAAS clusters with wild-type versus SUMO-activating enzyme inhibitor-

treated B-cell lymphoma cell lines, separately (Additional file 1: Supplementary Methods). 

Cluster 3 exhibited the significantly longest E-distance to the drug-treated subpopulation 

(Additional file 1: Fig. S27h; Kruskal-Wallis test, P-value < 0.01), suggesting intrinsic drug 

resistance. These findings highlight the value of multimodal analysis in identifying functionally 

relevant subpopulations that are not apparent from gene expression data alone, particularly in cancer 

types with subtle CNV differences. Collectively, our analyses demonstrate the MAAS’ s 

effectiveness in detecting clinically relevant subpopulations with low CNV heterogeneity but 

significantly differential therapeutic vulnerabilities.

MAAS  enabled high-resolution  identification  of  a  temozolomide-resistant  glioma 

subpopulation

GBM is  the  most  common  and  aggressive  primary  brain  malignancy  in  adults [109]. To 

investigate the heterogeneity of  GBM, we applied MAAS to a scATAC-seq dataset  of adult 

GBM [11] (patients CGY4218, CGY4250, CGY4275 and CGY4349) containing 866 tumor 

cells  (Additional file 1: Figs. S28 and S29). MAAS not  only  recapitulated tumor clusters 

identified by traditional single-modality approaches, but also resolved a finer subcluster (cluster 2) 

within  a previously defined major cell population at higher resolution (Fig. 4a  and b; 

Additional file 1: Fig. S30). Function enrichment  analysis  of  cluster  2 showed significant 

enrichment in  apoptosis, angiogenesis, and KRAS signaling pathways (Fig.  4c), indicating the 
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functional heterogeneity within the major cell population. To trace tumor progression, we 

constructed a minimum-evolution tree that mapped the developmental trajectory of GBM tumor 

cells (Fig. 4d and e; Additional file 2: Data S3). Notably, cluster 2 exhibited 4,188 DACRs and 

one cluster-specific SNV (Fig. 4e;  Additional file 1: Fig. S31), indicating that chromatin 

remodeling and mutational events collectively define this unique cluster. Importantly, this 

SNV was localized within one of the identified DACRs (chr4: 147103187-147104189) (Fig. 

4f). Detailed inspection of the chromatin accessibility coverage at this locus further confirmed the 

co-occurrence of the SNV and DACR (Fig. 4g), supporting a possible interplay between genetic 

and epigenetic alterations that may contribute to the functional heterogeneity of glioblastoma. 

These findings were further validated using an independent pediatric GBM (pGBM) dataset [11] 

(Additional file 1: Fig. S32 and Supplementary Methods). 

To  evaluate the therapeutic significance of MAAS-identified clusters,  we  examined 

their association with temozolomide (TMZ) resistance, the first-line chemotherapeutic for 

glioma. We first  linked  the  gene  activities  of  each  cluster  to the  half-maximal  inhibitory 

concentration (IC50) of TMZ (Methods). Cluster 2 exhibited significantly greater resistance to TMZ 

(Fisher’s exact test, P-value = 2.28×10-7), with accurate predictions supported by the area under 

the curve (AUC) values of 0.791, 0.733, and 0.694 (Fig. 4h; Additional file 1: Fig. S33a and b). 

To further validate these findings, we calculated the energy distance (E-distance) [110] between 

MAAS clusters and TMZ-associated subpopulations from six glioma cell lines [67, 111]

(Methods). Cluster  2 consistently  showed  the  shortest  E-distance  to  TMZ-resistant 

subpopulations (Fig. 4i and Additional file 1: Fig. S33c; Wilcoxon rank-sum test, P-value < 

0.0001). Additionally, the cluster  2 was further validated using an independent  GBM dataset 

(Additional file 1: Figs. S34 and S35). To experimentally confirm the TMZ resistance of 
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cluster 2, we conducted knockdown experiments in the U-87 glioblastoma cell line. 

Downregulation of cluster 2-specific genes, such as TPST1,  ADAMTS1,  RFTN1, 

significantly reduced TMZ resistance (Fig. 4j-k; Additional file 1: Fig. S36). Moreover, 

re-expression of TPST1 restored TMZ resistance in the rescue experiment (Fig. 4k). 

Additionally, overexpression experiments further confirmed the role of cluster 2 in 

conferring TMZ resistance in the U251 cell line (Fig. 4m). In summary, MAAS identified a 

glioma  cell  subpopulation with strong TMZ resistance at high resolution, underscoring the 

potential of the MAAS method as a powerful tool for accurately classifying clinically relevant 

glioma cell subpopulations.

A new MAAS-derived clinical signature across multiple cancer types

To evaluate  the  clinical  utility  of  the  MAAS method, we developed a new MAAS-derived 

clinical signature named MAASig, based on the expression of genes identified from 

subpopulation-specific GRNs (Fig. 5a; Additional file 1: Supplementary Methods). MAASig 

was constructed by first identifying subpopulation-specific open chromatin accessible regions 

and marker genes, followed by inferring cis-regulatory links [112] between these regions and 

their target genes. Transcription  factors  (TFs)  significantly  enriched  in  the  DACRs  and 

regulatory links connecting to subpopulation marker genes were retained for GRN construction. 

Finally, TFs and  their target genes from the GRNs of all subpopulations were  aggregated to 

define the candidate  signature  genes.  To develop  the  prognostic  model,  we  employed  an 

ensemble learning approach with 10-fold cross-validation to prevent overfitting. The most robust 

features were selected using four complementary feature selection algorithms: LASSO, stepwise 

Cox regression, CoxBoost  and  random survival forest. Each cancer-specific  model  was 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



26

validated on independent external cohorts that were not used during model training. In addition 

to glioblastoma, ovarian cancer and B-cell lymphoma, MAASig was applied to HCC and ccRCC 

(Additional file 1: Tables S4-S6). Across all five cancer types, MAASig demonstrated significant 

prognostic value  and superior prediction accuracy (Fig.  5b and c; log-rank test,  P-values = 

1.61×10-165, 1.52×10-106, 5.34×10-221, 1.53×10-42 and 1.73×10-65, respectively), outperforming 

traditional clinicopathologic variables and other existing signatures (Fig. 5c; Additional file 1: 

Figs. S37-S39, Table S7 and Supplementary Methods). For example, in GBM, MAASig 

achieved an average concordance index (C-index) of 0.861 and a time-dependent AUC of 0.925, 

significantly  outperforming clinical  characteristics such as age,  IDH mutation  status,  1p19q 

copy numbers, and MGMT promoter methylation status (Fig. 5b and Additional file 1: Fig. 

S37). Similarly, in ccRCC, MAASig consistently achieved the highest prediction accuracy, with an 

average C-index of 0.902 and a time-dependent AUC of 0.925 (Fig. 5b and Additional file 1: Fig. 

S37). Notably, MAASig remained significantly independent of other clinical features in both 

training and test sets across the cancer types (Additional file 1: Fig. S39), demonstrating its 

superiority and robustness  in  prognosticating  patient  survival. Calibration plots further 

confirmed that MAASig was well-calibrated across 1-, 3-, and 5-year time horizons in all 

cancer types (Additional file 1: Fig. S40). Decision curve analyses consistently 

demonstrated that MAASig provided a higher net clinical benefit than ‘ treating’ 

everyone or no one across a wide range of threshold probabilities [113] (Additional file 1: 

Fig. S41). 

To further examine the clinical significance, we focused on ccRCC [114], which exhibits 

substantial  intra-tumor heterogeneity that contributes to the drug-tolerance [115]. MAAS 

accurately identified seven distinct cell subpopulations that  were  previously overlooked by 
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traditional methods (Fig. 5d-f and Additional file 1: Fig. S42). To explore potential molecular 

mechanisms,  we  examined transcription  factors  binding  motifs in DACRs and inferred  TF 

binding motif activity by estimating the gain or loss of chromatin accessibility (Additional file 1: 

Supplementary Methods).  Our  analysis  revealed  significant  variability  in  TF activity  across 

clusters (Fig. 5g). For example, NR2C1 activity was elevated in cluster 7, while CTCF activity 

increased in cluster 6. Additionally, we assessed the correlation between the cluster-specific gene 

modules, identified by weighted correlation network analysis (WGCNA) [116], and 

immunotherapeutic sensitivity (Additional file 1: Supplementary Methods). We found  that 

cluster 7, represented by gene module 4, demonstrated the highest resistance to anti-PD-1 

blockade therapy with nivolumab (Fig.  5h-j; Additional file 1: Figs. S43 and S44). This 

finding was further validated using multiple immunotherapy response metrics, including 

tumor immune dysfunction and exclusion (TIDE) score [117], MHC-I association immunoscore 

(MIAS) [118], 18-gene gene expression profile (GEP) [119], and PD-1 gene activity [120] (Fig. 

5k-n). In summary, the MAAS-derived signature shows strong prognostic value and robustness in 

predicting patient survival across multiple cancer types.

Discussion 

To  our  knowledge, MAAS is  the  first  computational  method  for  multimodal  integration  of 

scATAC-seq data  capable of identifying critical tumor  cell subpopulations distinct from those 

determined by traditional single-modality approaches, such as Copy-scAT [11] and epiAneufinder 

[12]. MAAS addresses  several  key  limitations  of  existing  approaches.  First,  it  incorporates 

rigorous normalization and data denoising procedures to mitigate potential technical confounders 

such as variable cell coverage. Our extensive benchmarking demonstrates that the subpopulations 
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identified  by  MAAS represent  genuine  biological  differences  rather  than  technical  artifacts. 

Second, we found that MAAS provides higher accuracy in identifying tumor subpopulations 

compared to other available methods. By integrating multimodal data, MAAS uncovers new tumor 

cell  subpopulations with significant  biological  and clinical  relevance.  The MAAS method is 

fundamentally different from previous subpopulation prediction methods. Instead of relying solely 

on  single-modality  features,  which  often  overlook crucial  layers  of  epigenomic  information, 

MAAS maximizes the extraction of informative features from scATAC-seq data.  Additionally, 

its self-expressive multimodal matrix factorization strategy enhances multimodal signals, enabling 

a more robust  classification of  tumor subpopulations.  Furthermore,  MAAS is an explainable 

multimodal integration method that quantifies the contribution of each modality to cell cluster 

assignment.  For  example,  the  two  pediatric ependymoma cell subpopulations predicted  by 

MAAS were primarily driven by chromatin accessibility and SNVs, which contributed 69.68% and 

66.49% more than CNVs, respectively (Fig. 3c). The feasibility of the MAAS method is also 

noteworthy, as it allows for the simultaneous examination of genetic mutations and epigenetic 

variations without  requiring additional single-cell  assays. Despite the  improved accuracy of 

MAAS, it requires increased computational time. This limitation, however, may be alleviated 

through the implementation of distributed or heuristic algorithms. Moreover, since MAAS was 

specifically developed for tumor cells, it may not be suitable for normal or non-malignant cell 

populations, where the underlying biological assumptions and patterns of heterogeneity may differ 

substantially.

Importantly, beyond its methodological advances, MAAS provides novel biological 

insights into tumor heterogeneity. For example, MAAS resolved a high-resolution glioma 

subpopulation with strong TMZ resistance, a major clinical obstacle that contributes to 
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therapeutic failure and tumor recurrence. The ability of MAAS to resolve such clinically 

relevant subpopulations demonstrates that multimodal integration can go beyond cell 

classification to uncover functional heterogeneity with direct therapeutic implications. 

Moreover, genes highly expressed in this cluster, especially TPST1, was experimentally 

validated with TMZ resistance. Previous studies demonstrated that TPST1 can mediate the 

tyrosine sulfation of the chemokine receptor CXCR4, thereby enhancing CXCL12/CXCR4-

dependent signaling and promoting tumor cell migration and invasiveness [121]. 

Moreover, recent work on TPST2 revealed that tyrosine sulfation can modulate immune-

related receptors and affect the tumor cell response to interferon signaling and anti-PD1 

treatment [122]. By analogy, TPST1 activity may also shape the tumor-immune 

microenvironment and influence therapeutic outcomes beyond chemotherapy. These findings 

highlight the potential of TPST1 as novel therapeutic targets, and suggest that 

pharmacological inhibition of TPST1 or interference with sulfation-dependent signaling 

could help overcome TMZ resistance. Additionally, in pediatric ependymoma, where CNV 

burdens are extremely low, MAAS successfully resolved a highly proliferative, 

chemoresistant subpopulation and nominated everolimus and trametinib as potential 

therapeutic agents. While a Phase II study reported that everolimus did not show 

significant anti-tumor activity in this context [123], trametinib has demonstrated clinical 

activity in pediatric CNS tumors, achieving disease control or partial responses in a subset 

of patients with MAPK pathway activation [124]. These findings suggest that targeting the 

aggressive subpopulation identified by MAAS with trametinib may offer a promising 

therapeutic strategy. Notably, the cell-line models used in our study define TMZ resistance 

primarily based on IC50 values. This threshold has been well established in the literature as 
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a proxy for resistance [67], but we acknowledge that clinical resistance is a more 

complex phenomenon that involves a variety of factors, such as aberrant signaling 

pathways, autophagy, epigenetic modifications, and extracellular vesicle production [125]. 

In clinical settings, TMZ resistance is often defined by factors such as tumor recurrence 

during treatment or progression-free survival time [126]. Therefore, while the cell-line 

resistance models provide valuable insights into potential mechanisms of resistance, we 

recommend that future studies validate these findings in clinical patient samples to 

further confirm the relevance of these in vitro models to clinical resistance.

Motivated by the biological and therapeutic insights uncovered by MAAS, we further 

investigated its potential clinical utility in predicting patient outcomes. Prognostic markers are 

clinical measures that predict patient outcomes, such as recurrence or survival, and range from 

simple anatomical features to complex molecular indicators reflecting underlying disease biology 

[127]. However, most existing prognostic signatures have been derived from bulk-level data, 

which  obscure  the  profound  intratumoral  heterogeneity  that  exists  among  distinct  tumor 

subpopulations differing in metabolic activity, survival signaling, and epigenetic regulation [2]. To 

overcome this limitation, we integrated subpopulation-specific molecular features identified by 

MAAS to construct a multimodal prognostic signature, MAASig. By explicitly incorporating 

information  from  functionally  distinct  tumor  subpopulations,  MAASig  captures  biologically 

relevant heterogeneity and exhibits significantly improved predictive performance compared with 

conventional  clinicopathological  features  and  previously  reported  signatures.  Beyond  its 

methodological importance, MAASig  also  enables more precise patient stratification, supports 

risk-adapted treatment planning, and may guide the selection of targeted therapies for patients 

most likely to benefit. Furthermore, MAASig could be integrated with existing clinical workflows 
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as  a  complementary  biomarker  to  enhance  prognostic  accuracy  and  inform  personalized 

therapeutic decision-making.

Conclusions

In summary, the MAAS method underscores the power of multimodal integration in dissecting 

tumor heterogeneity using single-cell epigenomics data. MAAS will enable the broad application 

of widely available single-cell  sequencing data in oncology and other diseases,  ultimately 

revealing critical cell subpopulations for cell-targeted treatments.

References

1. Mazor T, Pankov A, Johnson BE, Hong C, Hamilton EG, Bell RJA, Smirnov IV, Reis GF, Phillips JJ, 

Barnes MJ, et al: DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define 

Similar Evolutionary Histories in Brain Tumors. Cancer Cell 2015, 28:307-317.

2. Dagogo-Jack I, Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin 

Oncol 2018, 15:81-94.

3. Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, Dai MS, Danilov AV, Alumkal JJ, Adey AC, et 

al: Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing 

data. Nat Biotechnol 2022, 40:527-538.

4. Zhao J, Jaffe A, Li H, Lindenbaum O, Sefik E, Jackson R, Cheng X, Flavell RA, Kluger Y: Detection of 

differentially abundant cell subpopulations in scRNA-seq data. Proc Natl Acad Sci U S A 2021, 118.

5. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, Litvin O, Fienberg HG, Jager 

A, Zunder ER, et al: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that 

Correlate with Prognosis. Cell 2015, 162:184-197.

6. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, Kumar T, Hu M, Sei E, Davis A, et al: 

Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. 

Nat Biotechnol 2021, 39:599-608.

7. Zhou Z, Xu B, Minn A, Zhang NR: DENDRO: genetic heterogeneity profiling and subclone detection 

by single-cell RNA sequencing. Genome Biol 2020, 21:10.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



32

8. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, 

Kundaje A, Greenleaf WJ, et al: Lineage-specific and single-cell chromatin accessibility charts human 

hematopoiesis and leukemia evolution. Nat Genet 2016, 48:1193-1203.

9. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, Wong CK, 

Cho SW, et al: The chromatin accessibility landscape of primary human cancers. Science 2018, 362.

10. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, Greenleaf WJ: 

Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human 

Hematopoietic Differentiation. Cell 2018, 173:1535-1548 e1516.

11. Nikolic A, Singhal D, Ellestad K, Johnston M, Shen Y, Gillmor A, Morrissy S, Cairncross JG, Jones S, 

Lupien M, et al: Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in 

cancer. Sci Adv 2021, 7:eabg6045.

12. Ramakrishnan A, Symeonidi A, Hanel P, Schmid KT, Richter ML, Schubert M, Colome-Tatche M: 

epiAneufinder identifies copy number alterations from single-cell ATAC-seq data. Nat Commun 2023, 

14:5846.

13. Wu CY, Lau BT, Kim HS, Sathe A, Grimes SM, Ji HP, Zhang NR: Integrative single-cell analysis of 

allele-specific copy number alterations and chromatin accessibility in cancer. Nat Biotechnol 2021, 

39:1259-1269.

14. Choi JD, Lee JS: Interplay between Epigenetics and Genetics in Cancer. Genomics Inform 2013, 

11:164-173.

15. Nam AS, Chaligne R, Landau DA: Integrating genetic and non-genetic determinants of cancer 

evolution by single-cell multi-omics. Nat Rev Genet 2021, 22:3-18.

16. De Falco A, Caruso F, Su XD, Iavarone A, Ceccarelli M: A variational algorithm to detect the clonal 

copy number substructure of tumors from scRNA-seq data. Nat Commun 2023, 14:1074.

17. Chen H, Lareau C, Andreani T, Vinyard ME, Garcia SP, Clement K, Andrade-Navarro MA, Buenrostro 

JD, Pinello L: Assessment of computational methods for the analysis of single-cell ATAC-seq data. 

Genome Biol 2019, 20:241.

18. Queitsch K, Moore TW, O'Connell BL, Nichols RV, Muschler JL, Keith D, Lopez C, Sears RC, Mills GB, 

Yardimci GG, Adey AC: Accessible high-throughput single-cell whole-genome sequencing with paired 

chromatin accessibility. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243430; 2023.

19. Wu CY, Lau BT, Kim HS, Sathe A, Grimes SM, Ji HP, Zhang NR: Integrative single-cell analysis of 

allele-specific copy number alterations and chromatin accessibility in cancer. Dataset. National Center 

for Biotechnology Information. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA674903/ and 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA498809/; 2021.

20. Regner MJ, Wisniewska K, Garcia-Recio S, Thennavan A, Mendez-Giraldez R, Malladi VS, Hawkins G, 

Parker JS, Perou CM, Bae-Jump VL, Franco HL: A multi-omic single-cell landscape of human 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243430
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA498809/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA674903/


33

gynecologic malignancies. Dataset. database of Genotypes and Phenotypes. 

https://dbgap.ncbi.nlm.nih.gov/beta/search/?OBJ=study&TERM=phs002340.v1.p1; 2021.

21. Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, et al: 

The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory 

drivers in post-chemotherapy residual tumour cells. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE247982; 2024.

22. Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG: Pro-

inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior 

fossa ependymoma. Dataset. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE206579; 2022.

23. Flash-Frozen Lymph Node with B Cell Lymphoma (14k sorted nuclei) - Epi Multiome ATAC + Gene 

Expression dataset analyzed using Cell Ranger ARC 2.0.0. 10X Genomics 

https://www10xgenomicscom/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-

nuclei-1-standard-2-0-0 2021.

24. Nikolic A, Singhal D, Ellestad K, Johnston M, Shen Y, Gillmor A, Morrissy S, Cairncross JG, Jones S, 

Lupien M, et al: Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in 

cancer. Dataset. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE163655 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139136; 2021.

25. Craig AJ, Silveira MAD, Ma L, Revsine M, Wang L, Heinrich S, Rae Z, Ruchinskas A, Dadkhah K, Do W, 

et al: Genome-wide profiling of transcription factor activity in primary liver cancer using single-cell 

ATAC sequencing. Dataset. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE227265; 2023.

26. Yu Z, Lv Y, Su C, Lu W, Zhang R, Li J, Guo B, Yan H, Liu D, Yang Z, et al: Integrative Single-Cell 

Analysis Reveals Transcriptional and Epigenetic Regulatory Features of Clear Cell Renal Cell 

Carcinoma. Dataset.  Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE207493; 2023.

27. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach MR, Pierce SE, 

Corces MR, et al: Massively parallel single-cell chromatin landscapes of human immune cell 

development and intratumoral T cell exhaustion. Dataset. National Center for Biotechnology 

Information. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA533341/; 2019.

28. Henriquez NV, Forshew T, Tatevossian R, Ellis M, Richard-Loendt A, Rogers H, Jacques TS, Reitboeck 

PG, Pearce K, Sheer D, et al: Comparative expression analysis reveals lineage relationships between 

human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro. 

Dataset. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42658; 

2013.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42658
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA533341/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227265
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227265
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139136
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163655
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163655
https://www10xgenomicscom/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0
https://www10xgenomicscom/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206579
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206579
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE247982
https://dbgap.ncbi.nlm.nih.gov/beta/search/?OBJ=study&TERM=phs002340.v1.p1


34

29. Van MT, Broaddus W, Dumur C: Frozen tumor ependymoma biopsy samples from pediatric patients. 

Dataset. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13267; 

2018.

30. Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK, Hoffman LM, Furtek 

SL, Reigan P, Handler MH, et al: Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory 

Phenotype in Group A Ependymoma. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66354; 2015.

31. Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E, Boots-Sprenger SH, Vandertop WP, 

Noske DP, Kaspers GJ, et al: EFEMP1 induces gamma-secretase/Notch-mediated temozolomide 

resistance in glioblastoma. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53014; 2014.

32. Tso JL, Yang S, Menjivar JC, Yamada K, Zhang Y, Hong I, Bui Y, Stream A, McBride WH, Liau LM, et 

al: Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-

glioblastoma stem cells to clinically relevant dose of temozolomide. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68029; 2015.

33. Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, Wu F, Chai R, Wang Z, Zhang C, et al: Chinese 

Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from 

Chinese Glioma Patients. Genomics Proteomics Bioinformatics 2021, 19:1-12.

34. Lam V, Bruss N, Liu T, Danilov AV: Pharmacologic targeting of SUMOylation drives mitochondrial 

dysfunction and metabolic alterations in B cell Malignancies. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254913; 2024.

35. Gao GF, Parker JS, Reynolds SM, Silva TC, Wang LB, Zhou W, Akbani R, Bailey M, Balu S, Berman BP, 

et al: Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons' 

Data. Cell Syst 2019, 9:24-34 e10.

36. Kommoss S, Winterhoff B, Oberg AL, Konecny GE, Wang C, Riska SM, Fan JB, Maurer MJ, April C, 

Shridhar V, et al: Bevacizumab May Differentially Improve Ovarian Cancer Outcome in Patients with 

Proliferative and Mesenchymal Molecular Subtypes. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082; 2017.

37. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H, Masuzaki H, Katabuchi H, 

Kawakami Y, Okamoto A, et al: High-risk ovarian cancer based on 126-gene expression signature is 

uniquely characterized by downregulation of antigen presentation pathway. Dataset. Gene Expression 

Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062; 2012.

38. Painter D, Barrans S, Lacy S, Smith A, Crouch S, Westhead D, Sha C, Patmore R, Tooze R, Burton C, 

Roman E: Cell-of-origin in diffuse large B-cell lymphoma: findings from the UK's population-based 

Haematological Malignancy Research Network. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181063; 2019.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181063
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254913
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68029
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53014
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66354
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13267


35

39. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, Xu W, Tan B, Goldschmidt N, Iqbal J, et al: 

Stromal gene signatures in large-B-cell lymphomas. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846; 2008.

40. Dubois S, Tesson B, Mareschal S, Viailly PJ, Bohers E, Ruminy P, Etancelin P, Peyrouze P, Copie-

Bergman C, Fabiani B, et al: Refining diffuse large B-cell lymphoma subgroups using integrated 

analysis of molecular profiles. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136971; 2019.

41. Ning J, Ye Y, Shen H, Zhang R, Li H, Song T, Zhang R, Liu P, Chen G, Wang H, et al: Macrophage-

coated tumor cluster aggravates hepatoma invasion and immunotherapy resistance via generating 

local immune deprivation. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174; 2024.

42. Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, Chow PK, Kuznetsov VA: Tumor-

adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for 

prognosis of resectable hepatocellular carcinoma. Dataset. Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427; 2018.

43. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, Shimamura T, Sato-Otsubo A, Nagae 

G, Suzuki H, et al: Integrated molecular analysis of clear-cell renal cell carcinoma. Dataset. European 

Bioinformatics Institute. https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-1980; 2013.

44. Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost F, Reva B, Lih TM, 

Chang HY, et al: Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. 

Dataset. LinkedOmics. https://kb.linkedomics.org/download; 2019.

45. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database C: The sequence 

read archive. Nucleic Acids Res 2011, 39:D19-21.

46. cell-ranger-atac [https://www.10xgenomics.com/support/cn/software/cell-ranger-atac/2.1/release-notes/

installation]

47. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R: Single-cell chromatin state analysis with Signac. 

Nat Methods 2021, 18:1333-1341.

48. Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang X, 

Christiansen L, DeWitt WS, et al: A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility. 

Cell 2018, 174:1309-1324 e1318.

49. Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using 

empirical Bayes methods. Biostatistics 2007, 8:118-127.

50. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing batch effects and 

other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28:882-883.

51. Muyas F, Sauer CM, Valle-Inclan JE, Li R, Rahbari R, Mitchell TJ, Hormoz S, Cortes-Ciriano I: De novo 

detection of somatic mutations in high-throughput single-cell profiling data sets. Nat Biotechnol 2024, 

42:758-767.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://www.10xgenomics.com/support/cn/software/cell-ranger-atac/2.1/release-notes/installation
https://www.10xgenomics.com/support/cn/software/cell-ranger-atac/2.1/release-notes/installation
https://kb.linkedomics.org/download
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-1980
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136971
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846


36

52. Yan J, Xi J, Yu Z: A parametric model for clustering single-cell mutation data. In 2022 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM). pp. 253-260; 2022:253-260.

53. Rousseeuw PJ: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. 

Journal of Computational and Applied Mathematics 1987, 20:53-65.

54. Davies DL, Bouldin DW: A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 1979, PAMI-1:224-227.

55. Pakhira MK, Bandyopadhyay S, Maulik U: Validity index for crisp and fuzzy clusters. Pattern 

Recognition 2004, 37:487-501.

56. Caliński T, Harabasz J: A dendrite method for cluster analysis. Communications in Statistics 1974, 3:1-

27.

57. Rzhetsky A, Nei M: Theoretical foundation of the minimum-evolution method of phylogenetic 

inference. Mol Biol Evol 1993, 10:1073-1095.

58. Paradis E, Claude J, Strimmer K: APE: Analyses of Phylogenetics and Evolution in R language. 

Bioinformatics 2004, 20:289-290.

59. Yu G: Using ggtree to Visualize Data on Tree-Like Structures. Curr Protoc Bioinformatics 2020, 

69:e96.

60. Li C, Shao X, Zhang S, Wang Y, Jin K, Yang P, Lu X, Fan X, Wang Y: scRank infers drug-responsive 

cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell 

Rep Med 2024, 5:101568.

61. Yerly L, Andreatta M, Garnica J, Domizio JD, Gilliet M, Carmona SJ, Kuonen F: Wounding triggers 

invasive progression in human basal cell carcinoma. bioRxiv 2024:2024.2005.2031.596823.

62. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R: Integrating single-cell transcriptomic data across 

different conditions, technologies, and species. Nat Biotechnol 2018, 36:411-420.

63. Maeser D, Gruener RF, Huang RS: oncoPredict: an R package for predicting in vivo or cancer patient 

drug response and biomarkers from cell line screening data. Brief Bioinform 2021, 22.

64. Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK, Hoffman LM, Furtek 

SL, Reigan P, Handler MH, et al: Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory 

Phenotype in Group A Ependymoma. Cancer Immunol Res 2015, 3:1165-1174.

65. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, 

Thompson IR, et al: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic 

biomarker discovery in cancer cells. Nucleic Acids Res 2013, 41:D955-961.

66. Rfast: A Collection of Efficient and Extremely Fast R Functions 

[https://CRAN.R-project.org/package=Rfast]

67. Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E, Boots-Sprenger SH, Vandertop WP, 

Noske DP, Kaspers GJ, et al: EFEMP1 induces gamma-secretase/Notch-mediated temozolomide 

resistance in glioblastoma. Oncotarget 2014, 5:363-374.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://CRAN.R-project.org/package=Rfast


37

68. Clough E, Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, 

Phillippy KH, Sherman PM, et al: NCBI GEO: archive for gene expression and epigenomics data sets: 

23-year update. Nucleic Acids Res 2024, 52:D138-D144.

69. Chen H, Wang Z, Gong L, Wang Q, Chen W, Wang J, Ma X, Ding R, Li X, Zou X, et al: A distinct class 

of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide 

association study. Nat Commun 2024, 15:1729.

70. Zou Y, Liu Z, Zhou Y, Wang J, Xu Q, Zhao X, Miao Z: TRPC5 mediates TMZ resistance in TMZ-

resistant glioblastoma cells via NFATc3-P-gp pathway. Transl Oncol 2021, 14:101214.

71. Mann HB, Whitney DR: On a test of whether one of two random variables is stochastically larger than 

the other. The annals of mathematical statistics 1947:50-60.

72. Pearson K: X. Contributions to the mathematical theory of evolution.—II. Skew variation in 

homogeneous material. Philosophical Transactions of the Royal Society of London(A) 1895:343-414.

73. Fisher RA: On the interpretation of χ 2 from contingency tables, and the calculation of P. Journal of 

the royal statistical society 1922, 85:87-94.

74. Kaplan EL, Meier P: Nonparametric estimation from incomplete observations. Journal of the American 

statistical association 1958, 53:457-481.

75. Therneau T.M. GPM: Modeling Survival Data: Extending the Cox Model. Springer, New York; 2000.

76. Ward MD, Ahlquist JS: Maximum likelihood for social science: Strategies for analysis. Cambridge 

University Press; 2018.

77. survivalROC: Time-Dependent ROC Curve Estimation from Censored Survival Data 

[https://CRAN.R-project.org/package=survivalROC]

78. Wu CY, Lau BT, Kim HS, Sathe A, Grimes SM, Ji HP, Zhang NR: Integrative single-cell analysis of 

allele-specific copy number alterations and chromatin accessibility in cancer. Nat Biotechnol 2021, 

39:1259-1269.

79. Zhang J, Li C, You C, Qi X, Zhang H, Guo J, Lin Z: Self-Supervised Convolutional Subspace 

Clustering Network. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR); 15-20 June 2019. 2019: 5468-5477.

80. McInnes L, Healy J, Melville J: Umap: Uniform manifold approximation and projection for dimension 

reduction. arXiv preprint arXiv:180203426 2018.

81. Chalise P, Fridley BL: Integrative clustering of multi-level 'omic data based on non-negative matrix 

factorization algorithm. PLoS One 2017, 12:e0176278.

82. Pierre-Jean M, Mauger F, Deleuze JF, Le Floch E: PIntMF: Penalized Integrative Matrix Factorization 

method for multi-omics data. Bioinformatics 2022, 38:900-907.

83. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A: Similarity 

network fusion for aggregating data types on a genomic scale. Nat Methods 2014, 11:333-337.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://CRAN.R-project.org/package=survivalROC


38

84. Wu D, Wang D, Zhang MQ, Gu J: Fast dimension reduction and integrative clustering of multi-omics 

data using low-rank approximation: application to cancer molecular classification. BMC Genomics 

2015, 16:1022.

85. Meng C, Kuster B, Culhane AC, Gholami AM: A multivariate approach to the integration of multi-

omics datasets. BMC Bioinformatics 2014, 15:162.

86. Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, Stegle O: MOFA+: a statistical 

framework for comprehensive integration of multi-modal single-cell data. Genome Biol 2020, 21:111.

87. Ashuach T, Gabitto MI, Koodli RV, Saldi GA, Jordan MI, Yosef N: MultiVI: deep generative model for 

the integration of multimodal data. Nat Methods 2023, 20:1222-1231.

88. Cheng M, Li Z, Costa IG: MOJITOO: a fast and universal method for integration of multimodal 

single-cell data. Bioinformatics 2022, 38:i282-i289.

89. Persad S, Choo ZN, Dien C, Sohail N, Masilionis I, Chaligne R, Nawy T, Brown CC, Sharma R, Pe'er I, et 

al: SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat 

Biotechnol 2023, 41:1746-1757.

90. Li Z, Kuppe C, Ziegler S, Cheng M, Kabgani N, Menzel S, Zenke M, Kramann R, Costa IG: Chromatin-

accessibility estimation from single-cell ATAC-seq data with scOpen. Nat Commun 2021, 12:6386.

91. Johnson JAI, Tsang AP, Mitchell JT, Zhou DL, Bowden J, Davis-Marcisak E, Sherman T, Liefeld T, Loth 

M, Goff LA, et al: Inferring cellular and molecular processes in single-cell data with non-negative 

matrix factorization using Python, R and GenePattern Notebook implementations of CoGAPS. Nat 

Protoc 2023, 18:3690-3731.

92. Smith MR: Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic 

trees. Bioinformatics 2020, 36:5007-5013.

93. Queitsch K, Moore TW, O'Connell BL, Nichols RV, Muschler JL, Keith D, Lopez C, Sears RC, Mills GB, 

Yardimci GG, Adey AC: Accessible high-throughput single-cell whole-genome sequencing with paired 

chromatin accessibility. Cell Rep Methods 2023, 3:100625.

94. Regner MJ, Wisniewska K, Garcia-Recio S, Thennavan A, Mendez-Giraldez R, Malladi VS, Hawkins G, 

Parker JS, Perou CM, Bae-Jump VL, Franco HL: A multi-omic single-cell landscape of human 

gynecologic malignancies. Mol Cell 2021, 81:4924-4941 e4910.

95. Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, et al: 

The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory 

drivers in post-chemotherapy residual tumour cells. Commun Biol 2024, 7:1211.

96. Yang Y, Yang L: Somatic structural variation signatures in pediatric brain tumors. Cell Rep 2023, 

42:113276.

97. Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG: Pro-

inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior 

fossa ependymoma. Nat Commun 2022, 13:3936.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



39

98. Rojo de la Vega M, Chapman E, Zhang DD: NRF2 and the Hallmarks of Cancer. Cancer Cell 2018, 

34:21-43.

99. Jurikova M, Danihel L, Polak S, Varga I: Ki67, PCNA, and MCM proteins: Markers of proliferation in 

the diagnosis of breast cancer. Acta Histochem 2016, 118:544-552.

100. Aiello NM, Kang Y: Context-dependent EMT programs in cancer metastasis. J Exp Med 2019, 

216:1016-1026.

101. Katoh M: Function and cancer genomics of FAT family genes (review). Int J Oncol 2012, 41:1913-

1918.

102. Henriquez NV, Forshew T, Tatevossian R, Ellis M, Richard-Loendt A, Rogers H, Jacques TS, Reitboeck 

PG, Pearce K, Sheer D, et al: Comparative expression analysis reveals lineage relationships between 

human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro. 

Cancer Res 2013, 73:5834-5844.

103. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, 

Steemers FJ, et al: The single-cell transcriptional landscape of mammalian organogenesis. Nature 

2019, 566:496-502.

104. Li C, Shao X, Zhang S, Wang Y, Jin K, Yang P, Lu X, Fan X, Wang Y: scRank infers drug-responsive 

cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell 

Rep Med 2024:101568.

105. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, 

Asiedu JK, et al: A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 

Profiles. Cell 2017, 171:1437-1452 e1417.

106. Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K, Hames-Fathi S, Ajayi D, Verfaillie 

A, Dhami P, et al: Signatures of copy number alterations in human cancer. Nature 2022, 606:984-991.

107. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, 

Carey CD, Rodig SJ, et al: Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity 

and Drug Tolerance. Cell Stem Cell 2017, 20:233-246 e237.

108. Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, Ding J, Brack A, Kartha VK, Tay T, et al: 

Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell 2020, 

183:1103-1116 e1120.

109. Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, Eichhorn SW, Greenwald AC, 

Kinker GS, Rodman C, et al: Interactions between cancer cells and immune cells drive transitions to 

mesenchymal-like states in glioblastoma. Cancer Cell 2021, 39:779-792 e711.

110. Székely GJ, Rizzo ML: Energy statistics: A class of statistics based on distances. Journal of Statistical 

Planning and Inference 2013, 143:1249-1272.

111. Tso JL, Yang S, Menjivar JC, Yamada K, Zhang Y, Hong I, Bui Y, Stream A, McBride WH, Liau LM, et 

al: Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-

glioblastoma stem cells to clinically relevant dose of temozolomide. Mol Cancer 2015, 14:189.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



40

112. Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu 

X, Jackson D, Minkina A, et al: Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell 

Chromatin Accessibility Data. Mol Cell 2018, 71:858-871 e858.

113. Rousson V, Zumbrunn T: Decision curve analysis revisited: overall net benefit, relationships to ROC 

curve analysis, and application to case-control studies. BMC Med Inform Decis Mak 2011, 11:45.

114. Yu Z, Lv Y, Su C, Lu W, Zhang R, Li J, Guo B, Yan H, Liu D, Yang Z, et al: Integrative Single-Cell 

Analysis Reveals Transcriptional and Epigenetic Regulatory Features of Clear Cell Renal Cell 

Carcinoma. Cancer Res 2023, 83:700-719.

115. Posadas EM, Limvorasak S, Figlin RA: Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 

2017, 13:496-511.

116. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V: hdWGCNA identifies co-expression 

networks in high-dimensional transcriptomics data. Cell Rep Methods 2023, 3:100498.

117. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al: Signatures of T cell 

dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018, 24:1550-1558.

118. Wu CC, Wang YA, Livingston JA, Zhang J, Futreal PA: Prediction of biomarkers and therapeutic 

combinations for anti-PD-1 immunotherapy using the global gene network association. Nat Commun 

2022, 13:42.

119. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, et 

al: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 

2018, 362.

120. Jiang Y, Chen M, Nie H, Yuan Y: PD-1 and PD-L1 in cancer immunotherapy: clinical implications 

and future considerations. Hum Vaccin Immunother 2019, 15:1111-1122.

121. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, Zhong J, Bode AM, Dong Z, Tao Y, Cao Y: Tyrosylprotein 

sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus 

encoded latent membrane protein 1 and associated with the metastatic potential of human 

nasopharyngeal carcinoma. PLoS One 2013, 8:e56114.

122. Oh Y, Kim S, Kim Y, Kim H, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, et al: Genome-wide CRISPR 

screening identifies tyrosylprotein sulfotransferase-2 as a target for augmenting anti-PD1 efficacy. 

Mol Cancer 2024, 23:155.

123. Bowers DC, Rajaram V, Karajannis MA, Gardner SL, Su JM, Baxter P, Partap S, Klesse LJ: Phase II 

study of everolimus for recurrent or progressive pediatric ependymoma. Neurooncol Adv 2023, 

5:vdad011.

124. Perreault S, Larouche V, Tabori U, Hawkin C, Lippe S, Ellezam B, Decarie JC, Theoret Y, Metras ME, 

Sultan S, et al: A phase 2 study of trametinib for patients with pediatric glioma or plexiform 

neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC 

Cancer 2019, 19:1250.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



41

125. Singh N, Miner A, Hennis L, Mittal S: Mechanisms of temozolomide resistance in glioblastoma - a 

comprehensive review. Cancer Drug Resist 2021, 4:17-43.

126. Ortiz R, Perazzoli G, Cabeza L, Jimenez-Luna C, Luque R, Prados J, Melguizo C: Temozolomide: An 

Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. 

Curr Neuropharmacol 2021, 19:513-537.

127. Galon J, Angell HK, Bedognetti D, Marincola FM: The continuum of cancer immunosurveillance: 

prognostic, predictive, and mechanistic signatures. Immunity 2013, 39:11-26.

128. Xiong K, Ding R, Li L: Multimodal-based analysis of single-cell ATAC-seq data enables highly 

accurate delineation of clinically relevant tumor cell subpopulations. GitHub. 

https://github.com/Larrycpan/MAAS; 2025.

List of abbreviations

scATAC-seq: single-cell assay for transposase-accessible chromatin using sequencing

scRNA-seq: single-cell RNA sequencing

MAAS: Multimodal-based Analysis of scATAC-Seq data

CNV: copy number variation

SNV: single-nucleotide variants

DACR: differentially accessible chromatin region

GRN: gene regulatory network

IC50: half maximal inhibitory concentration

PPFE: pediatric posterior fossa ependymoma

GBM: glioblastoma

TMZ: temozolomide

OC: ovarian cancer

HCC: hepatocellular carcinoma

ccRCC: clear cell renal cell carcinoma

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://github.com/Larrycpan/MAAS


42

TF-IDF: term frequency-inverse document frequency

UMAP: uniform manifold approximation and projection

WGCNA: weighted correlation network analysis

TF: transcription factor

TIDE: tumor immune dysfunction and exclusion

GEP: gene expression profile

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Funding

This work was funded by grants from the Shenzhen Medical Research Fund (grant no. C2503001 

to L.L.), the Major Program of Shenzhen Bay Laboratory (grant no. C1012524001 to L.L.), and 

the National Natural Science Foundation of China (grant no. 32370721, 32100533 to L.L., grant 

no. 32570730 to X.Z.).

Availability of data and materials

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



43

The raw glioma, PPFE, ccRCC and HCC scATAC-seq data are available in the NCBI database 

under accession numbers GSE139136 (GBM) [24], GSE163655 (pGBM) [24], GSE206579 

[22], GSE207493 [26], and GSE227265 [25], respectively. The raw ovarian cancer scATAC-

seq data with pathological stage and metastatic status is available via the database of Genotypes 

and Phenotypes (dbGaP) under the accession number phs002340.v1.p1 [20]. The raw ovarian 

cancer scATAC-seq data with treatment information is available in the NCBI database 

under the accession number GSE247982 [21]. The raw B-cell lymphoma scATAC-seq data are 

available from 10x Genomics [23]. The scATAC-seq dataset for the SNU601 cell line is available 

from the NCBI database under the accession number PRJNA674903 [19], and the single-cell 

whole-genome sequencing data for the SNU601 cell line is available under the accession number 

PRJNA498809 [19]. The tumor samples of patients SU006 and SU008 are available in the NCBI 

database under the accession number PRJNA533341 [27]. The single-cell K562 dataset is 

available under the accession number GSE243430 [18]. The bulk RNA-seq and clinical 

information of pediatric ependymoma is available in the NCBI under the accession number 

GSE42658 [28]. Gene expression and clinical features of patients from TCGA cohort are available 

from the GDC portal (https://portal.gdc.cancer.gov/)  [35]. Gene expression profiles of patients 

from the two cohorts CGGA693 and CGGA325 are publicly available from the Chinese Glioma 

Genome Atlas (https://www.cgga.org.cn/) [33]. Gene expression of experimentally determined 

wild-type and TMZ-resistant glioma cells were obtained from the NCBI database under the 

accession numbers GSE53014 [31] and GSE68029 [32]. Two bulk RNA-seq datasets of PPFE 

were obtained from the NCBI database under the accession numbers GSE13267 [29] and 

GSE66354 [30]. Bulk ATAC-seq data of B-cell lymphoma cell lines were obtained from the 

NCBI database under the accession number GSE254913 [34]. Datasets used for clinical signature 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



44

analysis from the NCBI database are available under the following accession numbers: (1) 

ovarian cancer, GSE140082 [36], and GSE32062 [37]; (2) B-cell lymphoma, GSE181063 

[38], GSE10846 [39], and GSE136971 [40]; (3) hepatocellular carcinoma, GSE116174 [41], 

and GSE76427 [42]. Gene expression and clinical information of ccRCC patients were 

retrieved from the E-MTAB-1980 [43] and CPTAC [44] cohorts, respectively. The open-

source MAAS is available from the following GitHub repository: 

https://github.com/Larrycpan/MAAS [128].

Acknowledgments

We thank Dr. Zheng Hu at the Chinese Academy of Sciences and members of the Li Laboratory 

for their helpful discussions. We also thank Dr. Zhiqiang Ye at the Shenzhen Bay Laboratory 

Supercomputing Center for high-level computing support.

Author contributions

L.L.  conceived  and  supervised  the  project.  K.X.,  R.D.,  Y.Q. and D.L performed  the 

bioinformatics analysis.  W.W. performed the experiments. J.W. and C.Y. contributed to the 

cancer analysis. K.X., R.D., X.Z., and L.L. wrote the manuscript with assistance from the other 

authors. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



45

Supplementary information

Additional file 1. Description, tables and figures of additional results and methods. Fig. S1: 

Benchmarking CNV calling from scATAC-seq with DNA-seq data. Fig. S2: Scatter plots 

showing Spearman correlation between the copy number values measured from DNA 

sequencing and pseudo-bulk copy numbers estimated from scATAC-seq. Fig. S3: 

Evaluation of SNV detection from scATAC-seq against scWGS as the orthogonal ground 

truth. Fig. S4: Hamming distance between recovered SNV profile and ground truth.  Fig. 

S5: Performances of cell clustering estimated by ARI, NMI and V-measure. Fig. S6: 

Accuracy of SNV denoising in two real colorectal cancer single-cell datasets. Fig. S7: 

MAAS performance with and without the chromatin accessibility correction. Fig. S8: 

MAAS performance against distinct value of CNV-weighting factor. Fig. S9: Contribution 

of each modality against distinct value of CNV-weighting factor. Fig. S10: MAAS 

performance against distinct convergence thresholds. Fig. S11: S-score against different 

dimensions of latent factor W and the number of clusters across datasets. Fig. S12: 

Comparing performances of tumor subpopulation identification by MAAS and other state-

of-the-art methods. Fig. S13: Clustering stability metrics as a function of cell number. Fig. 

S14: Comparison of trees between ground truth and constructed by latent factors 

calculated by different methods estimated by mutual cluster information. Fig. S15: 

Clustering performance against different number of modalities in simulated data. Fig. S16: 

CPU time and maximum memory usage for each method against the total number of cells. 

Fig. S17: Identification of K562 cell subpopulations from paired scATAC-seq and scWGS 

data obtained from the same cells. Fig. S18: Identification of gastric cancer 

subpopulations using scDNA-seq and MAAS. Fig. S19: Clustering performance against 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



46

different number of modalities in real ovarian cancer dataset. Fig. S20: Identification of 

tumor cell subpopulations in treated and non-treated ovarian cancer samples. Fig. S21: 

Cell type annotation of primary pediatric posterior fossa ependymoma. Fig. S22: SNV 

profile of tumor cells of PPFE. Fig. S23: Tumor cell clusters defined by CNVs and 

chromatin states of pediatric ependymoma. Fig. S24: Correlation bewteen sequencing 

depth and variant allele frequency estimated by bootstrapping. Fig. S25: Driver gene 

mutation of CASP9 was enriched in cluster 3. Fig. 26: Tumor cell clusters identified by 

traditional single-modality methods. Fig. S27: MAAS identified new B-cell lymphoma cell 

subpopulations. Fig. S28: SNV profile of tumor cells of glioma. Fig. S29: Copy number 

profiles of the glioma tumor cell clusters. Fig. S30: Tumor cell clusters defined by 

CNVs and chromatin states of glioma. Fig. S31: scATAC-seq peak tracks of clusters 1 

and 2 for cluster 1-specific accessible regions. Fig. S32: DACRs between adult GBM 

clusters 1 and 2 validated on a pediatric GBM dataset. Fig. S33: Responses of MAAS-

identified clusters temozolomide. Fig. S34: Responses of MAAS-identified clusters 

temozolomide in the validation dataset. Fig. S35: The TMZ-resisatance of MAAS clusters 

was independent of MGMT status. Fig. S36: Experimental validation of TMZ resistance of 

cluster 2 by examining cluster 2-specific genes. Fig. S37: Prognostic prediction 

performance. Fig. S38: C-index and AUC comparison for existing signatures across 

different cancer types. Fig. S39: Cox proportional-hazards model analysis revealed the 

prognostic value of MAASig in pan-cancer. Fig. S40: Calibration plot of the MAASig for 

survival outcomes. Fig. S41: Decision curve analysis of the MAASig for survival 

outcomes. Fig. S42: Tumor cell clusters defined by CNVs and chromatin states of renal 

cancer. Fig. S43: Identification of gene modules of each MAAS-determined cluster by 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



47

WGCNA. Table S1: Quality control metrics of scATAC-seq datasets analyzed in this 

study. Table S2: PCR primer. Table S3: shRNA oligonucleotides. Table S4: Datasets of 

MAASig performance estimation. Table S6: TFs and potential target genes included in 

the MAASig of each cancer. Table S6. Hazard ratio of signature genes across cancer 

types. Table S7: Publicly available signatures used for benchmark.

Additional file 2. Supplementary data. Data S1: List of genes in the drug-target gene 

module. Data S2: List of PPFE cluster 1-specific TFs and kinases included in the LINCS 

consortium. Data S3: List of differential chromatin accessible regions of glioma cluster 2 

identified by MAAS.

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



48

Figures and Tables

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



49

Fig. 1. The MAAS workflow. (A) MAAS takes as input a cell-by-peak matrix, a cell-by-CNV 

matrix, and a cell-by-SNV matrix. Raw peak data are adjusted based on the copy number values 

of the corresponding genomic regions. A robust principal component analysis (PCA) is applied to 

the SNV data to reduce noise and generate a low-rank matrix. (B). Cell similarities for each omics 

layer are calculated using Euclidean or Hamming distances.  These similarities are integrated 

through a modified matrix factorization strategy, enabling the inference of a latent space that 

captures  both  genetic  and  epigenetic  features  through  iterative  updates.  (C).  Tumor  cell 

subpopulations are identified using the latent factors.  The contribution of each modality to the 

subpopulation is determined by the first-order norm of the coefficient matrix H. Consensus cell 

distances are derived by calculating the Euclidean distance from the cell-by-latent factor matrix, 

which is then used to reconstruct cell hierarchy represented by a minimum evolution tree.
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Fig. 2. Benchmarking analysis of tumor subpopulation identification. a. UMAP embedding 

based on genetic features of three subpopulations. b. UMAP embedding based on MAAS latent 

factors for the three identified subpopulations. c. Consistency of cell distribution across the three 

subpopulations  when  comparing  ground-truth  to  MAAS  results.  d. Consistency  of  cell 

distributions across four subpopulations between the ground-truth and MAAS results. e. UMAP 
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embedding based on MAAS latent factors showing three ovarian cancer samples with different 

metastatic status and histological grade, and MAAS-identified clusters with distinct resolution. f. 

Accuracy  of  classifying  tumor  cell subpopulations  across  different  computational  methods. 

Classification performance is evaluated based on the ability to distinguish tumor subpopulations 

defined by metastatic status  (primary vs. metastatic tumors, left panel) or pathological stages 

(Ⅱ, Ⅲ and Ⅳ, right panel).
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Fig. 3.  A  new  pediatric ependymoma cell subpopulation  with  low  CNV burden is 

associated with multidrug resistance.  a. UMAP visualization of  the  two  tumor  cell 

subpopulations  identified  by  MAAS.  b. Significantly enriched cancer hallmarks in MAAS-

identified clusters 1 and 3, with thresholds of |logFC| > 0.1 and false discovery rate (FDR) < 0.05. 

c. Contribution of each modality to subpopulation identification. d. Average proliferation and 

migration scores for clusters 1 and 2. e. Cluster abundance between patients in grade II and 

III. P-values were determined by the t-test. f. Distribution of SNVs (top) and differentially 

accessible chromatin regions (bottom) across the three clusters. The heatmap in the bottom panel 
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shows Z-scored normalized accessibility. The P-value for mutational frequency differences was 

determined by the Kruskal-Wallis test. g. Pseudo-time ordering of tumor cell subpopulations 

showing  their  developmental  trajectories. h. Blomberg’s K values quantify  evolutionary 

signals based on MAAS and single modalities. i. Evolution tree of MAAS-identified clusters 

depicting the  temporal ordering of SNVs and DACRs.  Edges  represent  Euclidean distances 

computed in the MAAS-derived latent space, with a unit branch length of 0.07. j. Perturbation 

scores for three first-line drugs, with lower scores indicating greater drug resistance. k. Gene 

modules inferred from drug target co-expression networks using non-negative matrix 

factorization. Low module scores indicate  reduced predicted drug responsiveness. l. Boxplots 

comparing drug-target module scores between clusters 1 and 2. The center line represents the 

median, and the lower and upper hinges represent the first and third quartiles. The whiskers extend 

to the maximum and minimum values within 1.5 times the interquartile range from the hinge. P-

values were determined by the Wilcoxon rank-sum test. m. Distribution of predicted drug-sensitive 

versus drug-resistant cells across MAAS-determined clusters, based on different bulk RNA-seq 

reference datasets.  Statistical significance was assessed using Fisher’s exact test. n. Heatmap 

showing  reduced expression  of  upregulated transcription factors and kinases in cluster 1 

following treatment with approved targeted therapies.
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Fig.  4.  High-resolution profiling reveals a TMZ-resistant glioma subpopulation. a. UMAP 

embedding of the three tumor cell clusters determined by MAAS.  b. Sankey plot showed the 

correspondence  between  clusters identified by CNVs and those  identified  by  MAAS.  c. 

Differentially  enriched  cancer  hallmark  signatures  between  clusters.  The  left  panel  displays 

pathways enriched in MAAS clusters, while the right panel shows pathways enriched in tumor cell 

clusters identified by chromatin accessibility. The heatmap colors represent enrichment scores, 

with color shades indicating unique hallmarks detected by either MAAS or chromatin accessibility. 

d. Blomberg’s K quantifies the evolution signal of tumor cell clusters by MAAS and 

traditional single-modality methods. e. Hierarchy of MAAS-identified clusters, depicting the 

timing of  CNVs,  SNVs,  and DACRs. Edges  represent  Euclidean distances  computed  in  the 

MAAS-derived latent space, with a unit branch length of 1.00. f. Volcano plot showing DACRs 

(FDR < 0.05 and |logFC| > 0.5) between MAAS-identified clusters 1 and 2. Regions containing 

the six driver mutations specific to cluster 1 are highlighted.  g. scATAC-seq peak tracks for 

accessible  regions in  clusters  1  and 2,  with  noncoding SNVs marked by dark  red  dots.  h. 

Distribution  of  predicted  temozolomide  (TMZ)-sensitive  and  resistant  cells  across  MAAS-

identified clusters. The P-value, calculated by a chi-square test, is shown, along with the accuracy 

of predictions measured by the area under the curve (AUC). The dotted line represents the baseline 

of 0.5. Asterisks indicate significance based on permutations. i. Energy distance (E-distance) 

between the three MAAS clusters and TMZ-sensitive and resistant cells across three cell lines.  

The center line of the boxplot indicates the median, the box limits show the first and third quartiles, 

and the whiskers extend to the maximum and minimum values within 1.5 times the interquartile 

range from the hinge. The P-value was determined by a two-tailed Wilcoxon rank-sum test. j. 

TPST1 gene expression measured by qPCR. k. Effect of TPST1 knockdown and 
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overexpression on TMZ resistance across different concentrations. The viability of cells 

was measured after treatment with various concentrations of TMZ (0, 50, and 200 μM) 

in different experimental groups. Groups include: shControl+luc (shRNA non-targeting and 

luciferase), shTPST1#1+luc and shTPST1#2+luc (TPST1 knockdown with luciferase 

control), and shControl+TPST1-OE, shTPST1#1+TPST1-OE, and shTPST1#2+TPST1-OE 

(TPST1 overexpression). Viability is shown as the mean ± standard error of the mean 

across biological replicates (n = 3). Statistical significance was assessed using a Student’s 

t-test. l. Cell viability of TPST1 and overexpression between control and TMZ-treatment 

groups. P-values were determined by Student’s t-test. ns: no significance, *P-values < 

0.05, **P-values < 0.01, ***P-values < 0.001, ****P-values < 0.0001.
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Fig.  5.  A MAAS-derived clinical  signature accurately predict  prognosis  across multiple 

cancer  types. a. Schematic  illustration  of  the  workflow  for  generating  the  MAAS-derived 

multimodal signature (MAASig) (see details in the Supplementary Materials and Methods). b. 
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Average concordance index (C-index) of traditional clinical features and MAASig for survival 

prediction across  multiple  cancer  types,  including glioblastoma,  ovarian cancer  (OC),  B-cell 

lymphoma, hepatocellular carcinoma (HCC), and clear cell  renal cell  carcinoma (ccRCC).  c. 

Kaplan–Meier survival curves demonstrating the clinical relevance of MAASig in a pan-cancer 

meta-cohort. Datasets for each cancer type were combined into a single cohort, with MAASig 

stratification determined at the median value. Statistical  P-values were calculated using a two-

tailed log-rank test.  d. UMAP embedding of the six tumor cell  subpopulations identified by 

MAAS.  e. Sankey  plot  illustrating  the  clusters  identified  by  CNVs  and  those  identified  by 

MAAS. f. Cancer hallmark pathways enriched in each cluster. g. Heatmap of chromVAR bias-

corrected deviation scores for the differential TF motifs across clusters. The top bar indicates 

cluster-specific TF motifs with examples of sequence logos for the top TF motifs displayed on the 

right side of the plot. h-j. Spearman correlations: between eigengene-based connectivity (kME) of 

all modules (h), between module 4 eigengene and kME (i), and between log fold change (logFC) 

of differentially expressed genes and anti-PD-1 response versus non-response in patients (j). 

Shaded areas represent 95% confidence intervals.  k-n. Degree of immunotherapeutic response 

measured by various metrics: tumor immune dysfunction (k) and exclusion (TIDE) scores,  MHC 

I association immunoscore (MIAS) (l), 18-gene expression profiles (GEP) (m), and PDCD1 

(PD-1) (n) gene activity. The center line in each box plot represents the median, the lower and 

upper hinges represent the first and third quartiles, and the whiskers extend to the maximum and 

minimum values within 1.5 times the interquartile range from the hinge. P-values were determined 

using the Wilcoxon rank-sum test. ns: no significance, *P-values < 0.05, **P-values < 0.01, 

***P-values < 0.001, ****P-values < 0.0001.
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